Data from: Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: Primary and secondary gene responses with links to disease progression
Data files
May 21, 2024 version files 17.37 MB
-
README.md
-
Suppl_Figs_S1-S7_Sonkar_et_al_ToxSci_2024.pdf
-
Table_S1_TCPOBOP_DEGs.xlsx
-
Table_S2_Canonical_pathways.xlsx
-
Table_S3_Disease_BioFunction_ToxFunctions.xlsx
-
Table_S4_Upstream_Regulators.xlsx
-
Table_S5_TCPOBOP_DEGs_High_vs_Low_Oil.xlsx
Abstract
Constitutive Androstane Receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP, a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared to males. Early (1-day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2-wk) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to pro-inflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle activated carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver non-parenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.
README: Data from: Steatotic liver disease induced by TCPOBOP-activated hepatic constitutive androstane receptor: Primary and secondary gene responses with links to disease progression
https://doi.org/10.5061/dryad.tx95x6b5n
These files contain supplementary datasets for R Sonkar, H Ma, DJ Waxman (2024) Toxicological Sciences
Supplemental Figures S1 to S7 are included in a single pdf file.
Supplemental Tables S1 to S5 are included as individuL Excel Worksheets
*NOTE: These Supplemental files contain all of the information necessary to support research finding*s.