Skip to main content
Dryad logo

Data from: A trait-based approach to predict population genetic structure in bees

Citation

Lopez-Uribe, Margarita M.; Jha, Shalene; Soro, Antonella (2019), Data from: A trait-based approach to predict population genetic structure in bees, Dryad, Dataset, https://doi.org/10.5061/dryad.v3t4k0m

Abstract

Understanding population genetic structure is key to developing predictions about species susceptibility to environmental change, such as habitat fragmentation and climate change. It has been theorized that life-history traits may constrain some species in their dispersal and lead to greater signatures of population genetic structure. In this study, we use a quantitative comparative approach to assess if patterns of population genetic structure in bees are driven by three key species-level life-history traits: body size, sociality, and diet breadth. Specifically, we reviewed the current literature on bee population genetic structure, as measured by the differentiation indices Nei’s GST, Hedrick’s G`ST, and Jost’s D. We then used phylogenetic generalised linear models to estimate the correlation between the evolution of these traits and patterns of genetic differentiation. Our analyses revealed a negative and significant effect of body size on genetic structure, regardless of differentiation index utilized. For Hedrick’s G`ST and Jost’s D, we also found a significant impact of sociality, where social species exhibited lower levels of differentiation than solitary species. We did not find an effect of diet specialization on population genetic structure. Overall, our results suggest that physical dispersal or other functions related to body size are among the most critical for mediating population structure for bees. We further highlight the importance of standardizing population genetic measures to more easily compare studies and to identify the most susceptible species to landscape and climatic changes.

Usage Notes

Funding

National Science Foundation, Award: US NSF 1523817