Data from: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control
Data files
Jun 10, 2020 version files 38.64 GB
-
Data_readme.pdf
752.37 KB
-
ESI_Exp_S01.zip
990.47 MB
-
ESI_Exp_S02.zip
931.96 MB
-
ESI_Exp_S03.zip
645.96 MB
-
ESI_Exp_S04.zip
620.69 MB
-
ESI_Exp_S05.zip
943.35 MB
-
ESI_Exp_S06.zip
849.74 MB
-
ESI_Exp_S07.zip
944.35 MB
-
ESI_Exp_S08.zip
932.07 MB
-
ESI_Exp_S09.zip
991.84 MB
-
ESI_Exp_S10.zip
553.72 MB
-
ESI_Exp_S11.zip
977.11 MB
-
ESI_Exp_S12.zip
1 GB
-
ESI_Exp_S13.zip
992.13 MB
-
ESI_Exp_S14.zip
993.26 MB
-
ESI_Exp_S15.zip
958.67 MB
-
ESI_Exp_S16.zip
951.89 MB
-
ESI_Naive_S01.zip
320.66 MB
-
ESI_Naive_S02.zip
309.01 MB
-
ESI_Naive_S03.zip
305.60 MB
-
ESI_Naive_S04.zip
312.36 MB
-
ESI_Naive_S05.zip
320.85 MB
-
ESI_Naive_S06.zip
328.34 MB
-
ESI_Naive_S07.zip
357.08 MB
-
ESI_Naive_S08.zip
316.49 MB
-
ESI_Naive_S09.zip
323.95 MB
-
ESI_Naive_S10.zip
322.20 MB
-
ESI_Naive_S11.zip
332.99 MB
-
ESI_Naive_S12.zip
335.79 MB
-
ESI_Naive_S13.zip
342.88 MB
-
Train_CP_S01.zip
665.11 MB
-
Train_CP_S02.zip
717.25 MB
-
Train_CP_S03.zip
691.26 MB
-
Train_CP_S04.zip
618.05 MB
-
Train_CP_S05.zip
641.45 MB
-
Train_CP_S06.zip
698.96 MB
-
Train_CP_S07.zip
700.21 MB
-
Train_CP_S08.zip
672.20 MB
-
Train_CP_S09.zip
660.78 MB
-
Train_CP_S10.zip
702.73 MB
-
Train_CP_S11.zip
642.86 MB
-
Train_DT_S01.zip
725.50 MB
-
Train_DT_S02.zip
656.23 MB
-
Train_DT_S03.zip
689.86 MB
-
Train_DT_S04.zip
743.99 MB
-
Train_DT_S05.zip
671.02 MB
-
Train_DT_S06.zip
640.12 MB
-
Train_DT_S07.zip
686.27 MB
-
Train_DT_S08.zip
670.13 MB
-
Train_DT_S09.zip
625.02 MB
-
Train_DT_S10.zip
707.04 MB
-
Train_DT_S11.zip
654.67 MB
-
Train_sCP_S01.zip
598.59 MB
-
Train_sCP_S02.zip
530.30 MB
-
Train_sCP_S03.zip
288.34 MB
-
Train_sCP_S04.zip
606.64 MB
-
Train_sCP_S05.zip
533.04 MB
-
Train_sCP_S06.zip
484 MB
-
Train_sCP_S07.zip
525.12 MB
-
Train_sCP_S08.zip
569.43 MB
-
Train_sCP_S09.zip
538.34 MB
-
Train_sCP_S10.zip
265.33 MB
-
Train_sCP_S11.zip
312.83 MB
Jun 20, 2019 version files 77.28 GB
-
Data_readme.pdf
752.37 KB
-
ESI_Exp_S01.zip
990.47 MB
-
ESI_Exp_S02.zip
931.96 MB
-
ESI_Exp_S03.zip
645.96 MB
-
ESI_Exp_S04.zip
620.69 MB
-
ESI_Exp_S05.zip
943.35 MB
-
ESI_Exp_S06.zip
849.74 MB
-
ESI_Exp_S07.zip
944.35 MB
-
ESI_Exp_S08.zip
932.07 MB
-
ESI_Exp_S09.zip
991.84 MB
-
ESI_Exp_S10.zip
553.72 MB
-
ESI_Exp_S11.zip
977.11 MB
-
ESI_Exp_S12.zip
1 GB
-
ESI_Exp_S13.zip
992.13 MB
-
ESI_Exp_S14.zip
993.26 MB
-
ESI_Exp_S15.zip
958.67 MB
-
ESI_Exp_S16.zip
951.89 MB
-
ESI_Naive_S01.zip
320.66 MB
-
ESI_Naive_S02.zip
309.01 MB
-
ESI_Naive_S03.zip
305.60 MB
-
ESI_Naive_S04.zip
312.36 MB
-
ESI_Naive_S05.zip
320.85 MB
-
ESI_Naive_S06.zip
328.34 MB
-
ESI_Naive_S07.zip
357.08 MB
-
ESI_Naive_S08.zip
316.49 MB
-
ESI_Naive_S09.zip
323.95 MB
-
ESI_Naive_S10.zip
322.20 MB
-
ESI_Naive_S11.zip
332.99 MB
-
ESI_Naive_S12.zip
335.79 MB
-
ESI_Naive_S13.zip
342.88 MB
-
Train_CP_S01.zip
665.11 MB
-
Train_CP_S02.zip
717.25 MB
-
Train_CP_S03.zip
691.26 MB
-
Train_CP_S04.zip
618.05 MB
-
Train_CP_S05.zip
641.45 MB
-
Train_CP_S06.zip
698.96 MB
-
Train_CP_S07.zip
700.21 MB
-
Train_CP_S08.zip
672.20 MB
-
Train_CP_S09.zip
660.78 MB
-
Train_CP_S10.zip
702.73 MB
-
Train_CP_S11.zip
642.86 MB
-
Train_DT_S01.zip
725.50 MB
-
Train_DT_S02.zip
656.23 MB
-
Train_DT_S03.zip
689.86 MB
-
Train_DT_S04.zip
743.99 MB
-
Train_DT_S05.zip
671.02 MB
-
Train_DT_S06.zip
640.12 MB
-
Train_DT_S07.zip
686.27 MB
-
Train_DT_S08.zip
670.13 MB
-
Train_DT_S09.zip
625.02 MB
-
Train_DT_S10.zip
707.04 MB
-
Train_DT_S11.zip
654.67 MB
-
Train_sCP_S01.zip
598.59 MB
-
Train_sCP_S02.zip
530.30 MB
-
Train_sCP_S03.zip
288.34 MB
-
Train_sCP_S04.zip
606.64 MB
-
Train_sCP_S05.zip
533.04 MB
-
Train_sCP_S06.zip
484 MB
-
Train_sCP_S07.zip
525.12 MB
-
Train_sCP_S08.zip
569.43 MB
-
Train_sCP_S09.zip
538.34 MB
-
Train_sCP_S10.zip
265.33 MB
-
Train_sCP_S11.zip
312.83 MB
Abstract
Brain-computer interfaces (BCIs) using signals acquired with intracortical implants have achieved successful high-dimensional robotic device control useful for completing daily tasks. However, the substantial amount of medical and surgical expertise required to correctly implant and operate these systems greatly limits their use beyond a few clinical cases. A noninvasive counterpart requiring less intervention that can provide high-quality control would profoundly improve the integration of BCIs into the clinical and home setting. Here, we present and validate a noninvasive framework using electroencephalography (EEG) to achieve the neural control of a robotic device for continuous random target tracking. This framework addresses and improves upon both the “brain” and “computer” components by increasing, respectively, user engagement through a continuous pursuit task and associated training paradigm and the spatial resolution of noninvasive neural data through EEG source imaging. In all, our unique framework enhanced BCI learning by nearly 60% for traditional center-out tasks and by more than 500% in the more realistic continuous pursuit task. We further demonstrated an additional enhancement in BCI control of almost 10% by using online noninvasive neuroimaging. Last, this framework was deployed in a physical task, demonstrating a near-seamless transition from the control of an unconstrained virtual cursor to the real-time control of a robotic arm. Such combined advances in the quality of neural decoding and the practical utility of noninvasive robotic arm control will have major implications for the eventual development and implementation of neurorobotics by means of noninvasive BCI.