Skip to main content
Dryad

Transcriptome analysis of invasive Gypsophila paniculata (baby's breath) populations from Michigan and Washington, USA.

Abstract

Invasive species provide an opportune system to investigate how populations respond to new or changing environments. While the impacts of invasive species increase annually, many gaps in our understanding of how these species invade, adapt, and thrive in the areas they are introduced to remain. Using the perennial forb Gypsophila paniculata as a study system, we aimed to investigate how invasive species respond to different environments. Baby’s breath (Gypsophila paniculata) was introduced to North America in the late 1800’s and has since spread throughout the northwestern United States and western Canada. We used an RNA-seq approach to explore how molecular processes may be contributing to the success of invasive G. paniculata populations that are thought to share similar genetic backgrounds across distinct habitats.  Transcription profiles were constructed for root, stem, and leaf tissue from seedlings collected from a sand dune ecosystem in Petoskey, MI (PSMI) and a sagebrush ecosystem in Chelan, WA (CHWA). Using these data we assessed differential gene expression between the two populations and identified SNPs within differentially expressed genes. We identified 1,146 transcripts that were differentially expressed across all tissues between the two populations. GO processes enriched by genes displaying higher expression in PSMI were associated with increased nutrient starvation, while enriched processes in CHWA were associated with abiotic stress. Only 7.4% of the differentially expressed genes across all three tissues contained SNPs differing in allele frequencies of at least 0.5 between the populations. In addition, common garden studies found the two populations differed in germination rate and seedling emergence success, but not in above- and below-ground tissue allocation. Our results suggest that the success of invasive G. paniculata across these two environments is likely the result of plasticity in molecular processes responding to different environmental conditions, although some genetic divergence may also be contributing to these differences.