Skip to main content
Dryad

Wildfire as a natural stressor and its effect on female phenotype and ornament development

Data files

Mar 09, 2022 version files 41.74 KB

Abstract

Controlled low-intensity fires are commonly used in ecosystem management for both habitat restoration and wildfire management. Animals in those ecosystems may respond to fire by shifting energy allocation away from reproduction and growth, and toward maintenance. Stress-induced shifts in energy allocation may affect expression of condition-dependent sexual signals, which are sensitive to energetic and physiological trade-offs mediated by glucocorticoids. Here, we examine the effect of fire on ornament expression, corticosterone, and other phenotypic traits in a population of striped plateau lizards, Sceloporus virgatus, affected by the Horseshoe 2 Fire in the Chiricahua Mountains, Arizona, USA. The condition-dependent female ornament was significantly smaller the month following the fire than two years prior, and was both smaller and less orange on the burned site relative to a nearby unburned site. These patterns are similar to those found in a previous experimental study examining the response of the ornament to corticosterone manipulations. Yet, in the current study, corticosterone levels were not different in lizards on the burned and unburned sites. Perhaps glucocorticoid levels already returned to baseline, or do not adequately track environmental change. Females tended to be smaller and lighter on the burned site than the unburned site, however the year after the fire, body condition was higher for females on the burned site, indicating a rapid recovery and potential long-term benefits in response to low-intensity fires in this fire-adapted ecosystem. We found that the lizards adjusted energy allocation away from sexual signaling and growth in response to low-intensity fires. As fires and fire management are likely to increase in response to changing fire regimes across the globe, it will be important to consider behavioral and physiological responses of impacted species, as well as population, community, and ecosystem level responses.