Skip to main content
Dryad

Data from: Assessing bayesian phylogenetic information content of morphological data using knowledge from anatomy ontologies

Data files

Apr 29, 2024 version files 5.36 MB

Abstract

Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent ‘parts’, but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies—structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here we assess whether the proximity of ontology-annotated characters within an ontology predicts evolutionary patterns. To do so, we measure phylogenetic information across characters and evaluate if it is hierarchically structured by ontological knowledge—in much the same way as phylogeny structures across-species diversity. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to datasets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially structured by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that ontology does indeed structure phylogenetic information, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological datasets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may structure it: phylogeny, development, or convergence.