Skip to main content
Dryad

Data from: Robust single-image tree diameter estimation with mobile phones

Data files

May 31, 2022 version files 130.92 MB

Abstract

Ground-based forest inventories are a key element of forest carbon monitoring, reporting, and verification schemes and a cornerstone of forest ecology research. Recent work using LiDAR-equipped mobile phones to automate parts of the forest inventory process assumes that tree trunks are well-spaced and visually unoccluded, or else requires manual intervention or offline processing to identify and measure tree trunks.

In this paper, we design an algorithm that exploits a low-cost smartphone LiDAR sensor to estimate trunk diameter automatically from a single image in complex and realistic field conditions. We implement our design and build it into an app on a Huawei P30 Pro smartphone, demonstrating that the algorithm has low enough computational cost to run on this commodity platform in near real-time.

We evaluate our app in three different forests across three seasons and find that in a corpus of 97 sample tree images, our app estimates trunk diameter with RMSE of 3.7 cm (R2 = .97; 8.0% mean error) compared to manual DBH measurement. It achieves a 100% tree detection rate while reducing surveyor time by up to a factor of 4.6.

Our work contributes to the search for a low-cost, low-expertise alternative to Terrestrial Laser Scanning that is nonetheless robust and efficient enough to compete with manual methods. We highlight the challenges that low-end mobile depth scanners face in occluded conditions and offer a lightweight, fully automatic approach for segmenting depth images and estimating trunk diameter despite these challenges. Our approach lowers the barriers to in situ forest measurement outside of an urban or plantation context, maintaining a tree detection and accuracy rate comparable to previous mobile phone methods even in complex forest conditions.