Skip to main content
Dryad logo

Data from: Type 2 porcine reproductive and respiratory syndrome virus infection increases apoptosis at the maternal-fetal interface in late gestation pregnant gilts

Citation

Novakovic, Predrag; Harding, John C. S.; Al-Dissi, Ahmad N.; Detmer, Susan E. (2018), Data from: Type 2 porcine reproductive and respiratory syndrome virus infection increases apoptosis at the maternal-fetal interface in late gestation pregnant gilts, Dryad, Dataset, https://doi.org/10.5061/dryad.vs27p

Abstract

The pathogenesis of fetal death associated with porcine reproductive and respiratory syndrome (PRRS) is hypothesized to be a consequence of PRRS virus-induced apoptosis at the maternal-fetal interface (MFI). The objectives of this study were to evaluate distribution and degree of apoptosis in the uterine and fetal placental tissues during the experimental type 2 PRRS virus (PRRSV) infection and determine associations between apoptosis at the MFI, PRRSV RNA concentration and antigen staining intensity, PRRSV-induced microscopic lesions, and fetal preservation status. A total of 114 naïve, high-health pregnant gilts were inoculated with type 2 PRRSV on gestation day 85±1 with euthanasia 21 days later; 19 sham-inoculated gilts served as controls. Two hundred and fifty samples of uterine tissue with fetal placenta were selected based on negative, low PRRSV RNA, and high PRRSV RNA concentration (0, < or > 2.7 log10 copies/mg, respectively). TUNEL assay was used to detect apoptosis in the endometrium and at the MFI. PRRSV RNA concentration and numbers of PRRSV immunopositive cells in uterine and placental tissue were positively associated with the severity of apoptosis in the endometrium and the MFI (P<0.001, P<0.05 and P<0.001, respectively). The number of TUNEL positive cells at the MFI was also positively associated with the severity (P<0.001) of vasculitis, but not total numbers of inflammatory cells in the endometrium. Increased numbers of TUNEL positive cells at the MFI were associated with PRRSV load in the fetal thymus, and greater odds of meconium staining of the fetus at 21 days post infection (P<0.001 for both). These findings suggest an important role of apoptosis in the pathogenesis of uterine epithelial and trophoblastic cell death at the MFI. Moreover, apoptosis at the MFI is significantly associated with fetal demise during in utero type 2 PRRSV infection.

Usage Notes