Input and output files for WRF urban simulations for the metropolitan area of Tel-Aviv
Data files
Jan 19, 2021 version files 2.20 GB
-
02jul13_BEPBEM_output.npz
47.34 MB
-
02jul13_MM_output.npz
47.34 MB
-
02jul13_SLUCM_output.npz
47.34 MB
-
02jul14_BEPBEM_output.npz
47.34 MB
-
02jul14_MM_output.npz
47.34 MB
-
02jul14_SLUCM_output.npz
47.34 MB
-
03aug14_BEPBEM_output.npz
47.34 MB
-
03aug14_MM_output.npz
47.34 MB
-
03aug14_SLUCM_output.npz
47.34 MB
-
05aug13_BEPBEM_output.npz
47.34 MB
-
05aug13_MM_output.npz
47.34 MB
-
05aug13_SLUCM_output.npz
47.34 MB
-
07jul14_BEPBEM_output.npz
47.34 MB
-
07jul14_MM_output.npz
47.34 MB
-
07jul14_SLUCM_output.npz
47.34 MB
-
10aug11_BEPBEM_output.npz
47.34 MB
-
10aug11_MM_output.npz
47.34 MB
-
10aug11_SLUCM_output.npz
47.34 MB
-
11jun11_BEPBEM_output.npz
47.34 MB
-
11jun11_MM_output.npz
47.34 MB
-
11jun11_SLUCM_output.npz
47.34 MB
-
12jul13_BEP_output.npz
47.34 MB
-
12jul13_BEPBEM_BdgH_output.npz
75.34 MB
-
12jul13_BEPBEM_BdgLw_output.npz
75.34 MB
-
12jul13_BEPBEM_output.npz
75.34 MB
-
12jul13_MM_fictNoCT_output.npz
47.34 MB
-
12jul13_MM_output.npz
47.34 MB
-
12jul13_SLUCM_BdgH_output.npz
74.24 MB
-
12jul13_SLUCM_BdgLw_output.npz
74.24 MB
-
12jul13_SLUCM_fictCT_output.npz
47.34 MB
-
12jul13_SLUCM_output.npz
74.24 MB
-
18jul14_BEPBEM_output.npz
47.34 MB
-
18jul14_MM_output.npz
47.34 MB
-
18jul14_SLUCM_output.npz
47.34 MB
-
19aug12_BEPBEM_output.npz
47.34 MB
-
19aug12_MM_output.npz
47.34 MB
-
19aug12_SLUCM_output.npz
47.34 MB
-
21aug14_BEPBEM_output.npz
47.34 MB
-
21aug14_MM_output.npz
47.34 MB
-
21aug14_SLUCM_output.npz
47.34 MB
-
30jun12_BEPBEM_output.npz
47.34 MB
-
30jun12_MM_output.npz
47.34 MB
-
30jun12_SLUCM_output.npz
47.34 MB
-
namelist.input_BEP
5.91 KB
-
namelist.input_BEPBEM
5.91 KB
-
namelist.input_MM
5.83 KB
-
namelist.input_SLUCM
5.83 KB
-
namelist.wps
955 B
-
README.txt
1.88 KB
-
URBPARM.TBL
8.73 KB
Abstract
We implement and verify for the first time four Weather Research and Forecasting model urban configurations, focused on the coastal metropolitan area of Tel-Aviv (MTA) using updated land use and morphological maps. We analyze the mesoscale summertime flow and the urban canopy (UC) role in the occurrence of different hodograph dynamics observed within MTA at night. These events may be significant in air quality research. The four configurations – bulk (MM), single-layer (SLUCM), multi-layer (BEP), and BEP coupled with the building energy model – reproduce the observed diurnal temperature and wind cycles, with similar 10m wind direction bias and RMSE (15o and ~30o, respectively), with preference for MM and SLUCM at night. However, the SLUCM shows the lowest skill for the 10m wind speed (WS) (bias and RMSE 1ms-1), and the BEP shows the largest underestimation of the 2m temperature, ~-2.5oC. In the SLUCM, the WS increases over an UC and with increasing building heights. These results call for a re-examination of the SLUCM WS parameterization. The simulations show that at night, a convergence line (CL) builds up with the urban heat island, downstream of the NW flow. West of the CL, the wind continues flowing from the sea, and rotates anti-clockwise to form a non-elliptical sea-breeze hodograph. Removing MTA UC restores an elliptical hodograph. East of the CL, the UC supports an elliptical hodograph with a clockwise rotation through the NE sector, previously reported as dynamically unstable. We expect such wind hodograph dynamics within similar coastal metropolitan areas.