Skip to main content
Dryad logo

Seasonal release from competition explains partial migration in European moose

Citation

Van Moorter, Bram et al. (2021), Seasonal release from competition explains partial migration in European moose, Dryad, Dataset, https://doi.org/10.5061/dryad.w9ghx3fp0

Abstract

Partial migration, whereby a proportion of a population migrates between distinct seasonal ranges, is common throughout the animal kingdom. However, studies linking existing theoretical models of migration probability, with empirical data are lacking. The competitive release hypothesis for partial migration predicts that due to density-dependent habitat selection, the proportion of migrants increases as the relative quality and size of the seasonal range increases, but decreases with increasing migration cost and population density. To test this prediction, we developed a quantitative framework to predict the proportion of migrants, using empirical data from 545 individually GPS-marked moose (Alces alces) from across Fennoscandia, spanning latitudes of 56° to 68°N. Moose contracted their ranges to common and spatially limited winter areas (typically at lower elevation), but expanded them during summer due to an increase in suitable habitat (at highland ranges). As predicted from our model, a better and larger highland range relative to the lowland range corresponded to a higher proportion of migrants in an area. Quantitative predictions coupling the balance of habitat availability of seasonal ranges with the probability of migrating in a large herbivore is a necessary step towards an enhanced understanding of the mechanisms underlying migration at the population level.