Skip to main content
Dryad

CRISPR/Cas9 screen for essential endolysosomal genes under free choline limitation

Data files

Sep 11, 2023 version files 409.90 MB

Abstract

Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. Yet, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via phospholipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling. We identified the orphan lysosomal transmembrane protein SPNS1 as critical for cell survival under choline limitation. SPNS1 loss leads to intralysosomal accumulation of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Mechanistically, we reveal that SPNS1 is a proton gradient-dependent transporter of LPC species from the lysosome for their re-esterification into phosphatidylcholine in the cytosol. Finally, we establish that LPC efflux by SPNS1 is required for cell survival under choline limitation. Collectively, our work defines a lysosomal phospholipid salvage pathway that is essential under nutrient limitation, and more broadly, provides a robust platform to deorphan lysosomal gene function.