Skip to main content
Dryad

Observation of mHz-level cooperative Lamb shifts in an optical atomic clock

Data files

Sep 12, 2023 version files 3.83 GB

Abstract

We report on the direct observation of resonant electric dipole-dipole interactions in a cubic array of atoms in the many-excitation limit. The interactions, mediated by single-atom couplings to the shared electromagnetic vacuum, are shown to produce spatially-dependent cooperative Lamb shifts when spectroscopically interrogating the mHz-wide optical clock transition in strontium-87. We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for state-of-the-art optical atomic clocks. Additionally, we demonstrate that excitation of the atomic dipoles near a Bragg angle can enhance these effects by nearly an order of magnitude compared to non-resonant geometries. Given the remarkable precision of frequency measurements and the high accuracy of the modeled response, our work demonstrates that such a clock is a novel platform for studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons.