Skip to main content
Dryad

Site fidelity and behavioral plasticity regulate an ungulate’s response to extreme disturbance

Data files

Mar 11, 2022 version files 2.48 MB

Abstract

1. With rapid global change, the frequency and severity of extreme disturbance events are increasing worldwide. The ability of animal populations to survive these stochastic events depends on how individual animals respond to their altered environments, yet our understanding of the immediate and short-term responses of animals to acute disturbances remains poor.

2. We focused on animal responses to the environmental disturbance created by megafire. Specifically, we explored the effects of the 2018 Mendocino Complex Fire in northern California, USA on the behaviour and body condition of black-tailed deer (Odocoileus hemionus columbianus). We predicted that deer would be displaced by the disturbance or experience high mortality post-fire if they stayed in the burn area.

3. We used data from GPS collars on 18 individual deer to quantify patterns of home range use, movement, and habitat selection before and after the fire. We assessed changes in body condition using images from a camera trap grid. The fire burned through half of the study area, facilitating a comparison between deer in burned and unburned areas.

4. Despite a dramatic reduction in vegetation in burned areas, deer showed high site fidelity to pre-fire home ranges, returning within hours of the fire. However, mean home range size doubled after the fire and corresponded with increased daily activity in a severely resource-depleted environment. Within their home ranges, deer also selected strongly for patches of surviving vegetation and woodland habitat, as these areas provided forage and cover in an otherwise desolate landscape. Deer body condition significantly decreased after the fire, likely as a result of a reduction in forage within their home ranges, but all collared deer survived for the duration of the study.

5. Understanding the ways in which large mammals respond to disturbance like wildfire is increasingly important as the extent and severity of such events increases across the world. While many animals are adapted to disturbance regimes, species that exhibit high site fidelity or otherwise fixed behavioural strategies may struggle to cope with increased climate instability and associated extreme disturbance events.