Skip to main content
Dryad logo

A model of digestive tooth corrosion in lizards: experimental tests and taphonomic implications


Smith, Krister T. et al. (2022), A model of digestive tooth corrosion in lizards: experimental tests and taphonomic implications, Dryad, Dataset,



Corrosion patterns induced by gastric fluids on the skeleton of prey animals may depend on the nature of the corrosive agents (acid, enzymes) as well as on the composition of the hard parts and the soft tissues that surround them. We propose a framework for predicting and interpreting corrosion patterns on lizard teeth, our model system, drawing on the different digestive pathways of avian and non-avian vertebrate predators. We propose that high-acid, low-enzyme systems (embodied by mammalian carnivores) will lead to corrosion of the tooth crowns, whereas low-acid, high-enzyme systems (embodied by owls) will lead to corrosion of the tooth shafts. We test our model experimentally using artificial gastric fluids (with HCl and pepsin) and feeding experiments, and phenomenologically using wild-collected owl pellets with lizard remains. Finding an association between the predictions and the experimental results, we then examine corrosion patterns on nearly 900 fossil lizard jaws. Given an appropriate phylogenetic background, our focus on physiological rather than taxonomic classes of predators allows the extension of the approach into Deep Time.


Lizard jaws recovered from carnivore scat, owl pellets, and fossil sites were assessed for corrosion damage to crowns and shafts. These data were analyzed using cumulative link models and cumulative link mixture models, both univariate and multivariate. Other small statistical tests are included.


National Science Foundation, Award: DEB 0508796

Deutsche Forschungsgemeinschaft, Award: UT 41/4-1

Senckenberg Gesellschaft für Naturforschung (SGN)