Skip to main content

Midgut transcriptome assessment of the cockroach-hunting wasp Ampulex compressa (Apoidea: Ampulicidae)

Cite this dataset

Sann, Manuela et al. (2021). Midgut transcriptome assessment of the cockroach-hunting wasp Ampulex compressa (Apoidea: Ampulicidae) [Dataset]. Dryad.


The emerald jewel wasp Ampulex compressa (Hymenoptera: Ampulicidae) is a solitary wasp that is widely known for its specialized hunting of cockroaches as larvae provision. Adult wasps mainly feed on pollen and nectar, while their larvae feed on the cockroachs’ body, first as ecto- and later as endoparsitoids. Little is known about the expression of digestive, detoxification and stress-response-related genes in the midgut of A. compressa, or about its transcriptional versatility between life stages. To identify gut-biased genes related to digestion, detoxification, and stress response, we explored the midgut transcriptome of lab-reared A. compressa, for both adults and larvae, by focusing on the top 100 significantly up- and down-regulated genes. From the top 100 significantly differentially expressed genes (DEGs), we identified 39 and 36 DEGs putatively related to digestion and detoxification in the adult wasps and larvae, respectively. The two carbohydrases alpha-glucosidase (containing an alpha-amylase domain) and glycosyl hydrolase family 31, as well as the two proteinases chymotrypsin and trypsin, revealed the highest gene diversity. We identified six significant DEGs related to detoxification, which comprise glutathione S-transferase, cytochrome P450s and UDP-glucuronosyltransferase. The gene expression levels that were significantly expressed in both life stages vary strongly between life stages, as found in genes encoding for chymotrypsin and trypsin or glycosyl hydrolases family 31. The number of genes related to alpha-glucosidase, glycosyl hydrolase family 31, and cytochrome P450s was found to be similar across nine reference hymenopteran species, except for the identified glycosyl hydrolase family 31 gene, which was absent in all reference bee species. Phylogenetic analyses of the latter candidate genes revealed that they cluster together with their homologous genes found in the reference hymenopteran species. These identified candidate genes provide a basis for future comparative genomic and proteomic studies on (ontogenetic) dietary transitions in Hymenoptera.


University of Freiburg, Award: Project-ID 2100189601