Skip to main content
Dryad

Data from: A biological invasion modifies host immune responses to parasite infection

Data files

Aug 22, 2024 version files 51.87 KB

Abstract

Biological invasions can disrupt the close and longstanding co-evolved relationships between host and parasites. At the same time, the shifting selective forces acting on demograpy during invasion can result in rapid evolution of traits in both host and parasite. Hosts at the invasion front may reduce investment into costly immune defences and redistribute those resources to other fitness-enhancing traits. Parasites at the invasion front may have reduced pathogenicity because traits that negatively impact host dispersal are left behind in the expanding range. The host’s immune system is its primary arsenal in the coevolutionary ‘arms race’ with parasites. To assess the effects of invasion history on immune responses to parasite infection we conducted a cross-infection experiment which paired common-garden reared cane toads and lungworm parasites originating from various sites in their invaded range across northern Australia. Infected toads had larger spleens and higher concentrations of eosinophils than did uninfected toads. Infected toads also exhibited lower bacteria-killing ability, perhaps reflecting a trade-off of resources towards defences that are more specifically anthelminthic. The impact of infection intensity on multiple immune measures differed among toads and parasites from different parts of the invasion trajectory, supporting the hypothesis that invasion has disrupted patterns of local adaptation.