Skip to main content
Dryad logo

Cellular costs underpin micronutrient limitation in phytoplankton

Citation

McCain, J. Scott P. et al. (2021), Cellular costs underpin micronutrient limitation in phytoplankton, Dryad, Dataset, https://doi.org/10.5061/dryad.xd2547dfs

Abstract

Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently unclear how micronutrient scarcity affects cellular processes, and how interdependence across micronutrients arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding a novel approach for estimating biogeochemical metrics including taxon-specific growth rates. Our results show that cumulative cellular costs govern how environmental conditions modify phytoplankton growth.

Methods

Data generated using a diatom proteomic allocation model, as well as trace metal concentration data, data from GEOTRACES, and metaproteome-derived diatom proteomic observations.

Usage Notes

Code for running analyses is found at: https://github.com/bertrand-lab/mn-fe-allocation.

Funding

Natural Sciences and Engineering Research Council of Canada, Award: RGPIN-2015-05009

Simons Foundation, Award: 504183

European Research Council, Award: 724289

National Science Foundation, Award: NSF-ANT-1043671, NSF-OCE-1756884

Gordon and Betty Moore Foundation, Award: GBMF3828