Skip to main content
Dryad

Common field data limitations can substantially bias sexual selection metrics

Data files

Abstract

Sexual selection studies widely estimate several metrics, but values may be inaccurate because standard field methods for studying wild populations produce limited data (e.g., incomplete sampling, inability to observe copulations directly). We compared four selection metrics (Bateman gradient, opportunity for sexual selection, opportunity for selection, and s’max) estimated with simulated complete and simulated limited data for 15 socially monogamous songbird species with extra-pair paternity (4-54% extra-pair offspring). Inferring copulation success from offspring parentage creates non-independence between these variables and systematically underestimates copulation success. We found that this introduces substantial bias for the Bateman gradient, opportunity for sexual selection, and s’max. Notably, 47.5% of detected Bateman gradients were significantly positive for females, suggesting selection on females to copulate with multiple males, though the true Bateman gradient was zero. Bias generally increased with the extent of other sources of data limitations tested (nest predation, male infertility, and unsampled floater males). Incomplete offspring sampling introduced bias for all metrics except the Bateman gradient, while incomplete sampling of extra-pair sires did not introduce additional bias when sires were a random subset of breeding males. Overall, our findings demonstrate how biases due to field data limitations can strongly impact the study of sexual selection.