Skip to main content
Dryad

Landslide age, elevation and residual vegetation determine tropical montane forest canopy recovery and biomass accumulation after landslide disturbances in the Peruvian Andes

Data files

Jun 29, 2021 version files 3.99 MB

Abstract

Landslides are common natural disturbances in tropical montane forests. While the geomorphic drivers of landslides in the Andes have been studied, factors controlling post-landslide forest recovery across the steep climatic and topographic gradients characteristic of tropical mountains are poorly understood.

Here we use a LiDAR-derived canopy height map coupled with a 25-year landslide time series map to examine how landslide, topographic, and biophysical factors, along with residual vegetation, affect canopy height and heterogeneity in regenerating landslides. We also calculate aboveground biomass accumulation rates and estimate the time for landslides to recover to mature forest biomass levels.

We find that age and elevation are the biggest determinants of forest recovery, and that the jump-start in regeneration that residual vegetation provides lasts for at least 18 years. Our estimates of time to biomass recovery (31.6-37.1 years) are surprisingly rapid, and as a result we recommend that future research pair LiDAR with hyperspectral imagery to estimate forest aboveground biomass in frequently disturbed landscapes.

Synthesis: Using a high-resolution LiDAR dataset and a time-series inventory of 608 landslides distributed across a wide elevational gradient in Andean montane forest, we show that age and elevation are the most influential predictors of forest canopy height and canopy variability. Other features of landslides, in particular the presence of residual vegetation, shape post-landslide regeneration trajectories. LiDAR allows for a detailed analysis of forest structural recovery across large landscapes and numbers of disturbances, and provides a reasonable upper bound on aboveground biomass accumulation rates. However, because this method does not capture the effect of compositional change through succession on aboveground biomass, wherein high-wood density species gradually replace light-wooded pioneer species, it overestimates aboveground biomass. Given previously estimated stem turnover rates along this elevational gradient, we posit that aboveground biomass recovery takes at least three times as long as our recovery time estimates based on LiDAR-derived structure alone.