Skip to main content
Dryad

Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs

Data files

Jul 24, 2020 version files 7.81 GB
Feb 03, 2021 version files 53.51 GB

Abstract

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated the inner workings of RNAP, and mutations in genes encoding RNAP drive adaptation of Escherichia coli to many health- and industry-relevant environments, yet a paucity of systematic analyses has hampered our understanding of the fitness benefits and trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and confer insensitivity to killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.