Skip to main content
Dryad

Data from: Current inequality and future potential of US urban tree cover for reducing heat-related health impacts

Abstract

Excessive heat is a major and growing risk for urban residents. Here, we estimate the inequality in summertime heat-related mortality, morbidity, and electricity consumption across 5,723 US municipalities and other places, housing 180 million people during the 2020 census. On average, trees in majority non-Hispanic white neighborhoods cool the air by 0.19 ± 0.05⁰C more than in POC neighborhoods, leading annually to trees in white neighborhoods helping prevent 190 ± 139 more deaths, 30,131 ± 10,406 more doctors’ visits, and 1.4 ± 0.5 terawatt-hours (TWhr) more electricity consumption than in POC neighborhoods. We estimate that an ambitious reforestation program would require 1.2 billion trees and reduce population-weighted average summer temperatures by an additional 0.38 ± 0.01⁰C.  This temperature reduction would reduce annual heat-related mortality by an additional 464 ± 89 people, annual heat-related morbidity by 80,785 ± 6110 cases, and annual electricity consumption by 4.3 ± 0.2 TWhr, while increasing annual carbon sequestration in trees by 23.7 ± 1.2 MtCO2e yr-1 and decreasing annual electricity-related GHG emissions by 2.1 ± 0.2 MtCO2e yr-1. The total economic value of these benefits, including the value of carbon sequestration and avoided emissions, would be USD 9.6 ± 0.5 billion, although in many neighborhoods the cost of planting and maintaining trees to achieve this increased tree cover would exceeds these benefits. The exception is areas that currently have less tree cover, often majority POC, which tend to have a relatively high return-on-investment from tree planting.