Skip to main content
Dryad logo

Respirometric screening and characterization of mitochondrial toxicants within the ToxCast phase I and II chemical libraries

Citation

Simmons, Steven (2020), Respirometric screening and characterization of mitochondrial toxicants within the ToxCast phase I and II chemical libraries, Dryad, Dataset, https://doi.org/10.5061/dryad.zkh189367

Abstract

Mitochondrial toxicity drives several adverse health outcomes. Current high-throughput screening assays for chemically-induced mitochondrial toxicity typically measure changes to mitochondrial structure and may not detect known mitochondrial toxicants. We adapted a respirometric screening assay (RSA) measuring mitochondrial function to screen ToxCast chemicals in HepG2 cells using a tiered testing strategy. Of 1,042 chemicals initially screened at a single maximal concentration, 243 actives were identified and re-screened at seven concentrations. Concentration-response data for three respiration phases confirmed activity and indicated a mechanism for 193 mitochondrial toxicants: 149 electron transport chain inhibitors (ETCi), 15 uncouplers and 29 ATP synthase inhibitors. Subsequently, an electron flow assay (EFA) was used to identify the target complex for 84 of the 149 ETCi. Sixty reference chemicals were used to compare the RSA to existing ToxCast and Tox21 mitochondrial toxicity assays. The RSA was most predictive (accuracy = 90%) of mitochondrial toxicity. The Tox21 mitochondrial membrane potential assay was also highly predictive (accuracy = 87%) of bioactivity but underestimated the potency of well-known ETCi and provided no mechanistic information. The tiered RSA approach accurately identifies and characterizes mitochondrial toxicants acting through diverse mechanisms and at a throughput sufficient to screen large chemical inventories. The EFA provides additional confirmation and detailed mechanistic understanding for ETCi, the most common type of mitochondrial toxicants among ToxCast chemicals. The mitochondrial toxicity screening approach described herein may inform hazard assessment and the in vitro bioactive concentrations used to derive relevant doses for screening level chemical assessment using new approach methodologies.