Skip to main content
Dryad

Data for: Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats

Data files

Apr 23, 2021 version files 5.81 GB

Abstract

Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape from innate and conditioned threats. The hypothalamic dorsal premammillary nucleus (PMd) may control escape, as it is strongly activated by escape-inducing threats and projects to the region most implicated in escape, the dorsolateral periaqueductal gray (dlPAG). We show that in mice cholecystokinin (cck)-expressing PMd cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Lastly, human fMRI data show that a posterior hypothalamic-to-dlPAG pathway increases activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd as a central node of the escape network.