Skip to main content
Dryad

Data for: Radiative feedbacks on land surface change and associated tropical precipitation shifts

Cite this dataset

Lague, Marysa; Boos, William; Swann, Abigail (2022). Data for: Radiative feedbacks on land surface change and associated tropical precipitation shifts [Dataset]. Dryad. https://doi.org/10.6078/D16H6K

Abstract

Changes in land surface albedo and land surface evaporation modulate the atmospheric energy budget by changing temperatures, water vapor, clouds, snow and ice cover, and the partitioning of surface energy fluxes. Here idealized perturbations to land surface properties are imposed in a global model to understand how such forcings drive shifts in zonal mean atmospheric energy transport and zonal mean tropical precipitation. For a uniform decrease in global land albedo, the albedo forcing and a positive water vapor feedback contribute roughly equally to increased energy absorption at the top of the atmosphere (TOA), while radiative changes due to the temperature and cloud cover response provide a negative feedback and energy loss at TOA. Decreasing land albedo causes a northwards shift in the zonal mean intertropical convergence zone (ITCZ). The combined effects on ITCZ location of all atmospheric feedbacks roughly cancel for the albedo forcing; the total ITCZ shift is comparable to that predicted for the albedo forcing alone. For an imposed increase in evaporative resistance that reduces land evaporation, low cloud cover decreases in the northern mid-latitudes and more energy is absorbed at TOA there; longwave loss due to warming provides a negative feedback on the TOA energy balance and ITCZ shift. Imposed changes in land albedo and evaporative resistance modulate fundamentally different aspects of the surface energy budget. However, the pattern of TOA radiation changes due to the water vapor and air temperature responses are highly correlated for these two forcings because both forcings lead to near-surface warming.

Methods

Output is saved as monthly averaged netcdf output from coupled CESM (CAM5-SLIM) simulations.

Usage notes

Time series are comprised of monthly mean values. Files marked *.cam.* are atmospheric output, while *.clm2.* are land output from SLIM. Averages of all fields (including those without time series) are provided in the files marked *_annual_avg* (single time slice) or *_year_avg* (average of each month, ie 12 time slices).

Atmospheric (CAM) variables are described in the CESM documentation, e.g. here:
https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/ug5_0/hist_flds_fv_cam5.html

Land (SLIM) variables are described in the SLIM model source code on github at https://github.com/marysa/SimpleLand/wiki and in the SLIM documentation in Laguë et al. 2019:

Laguë, M. M., Bonan, G. B., & Swann, A. L. S. (2019). Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System. Journal of Climate, 32(18), 5725–5744. https://doi.org/10.1175/jcli-d-18-0812.1

 

Experiment names are as follows:

global_a2_cv2_hc0.1_rs200_cheyenne : albedo=0.2, evaporative resistance = 200s/m

global_a2_cv2_hc0.1_rs100_cheyenne : albedo=0.2, evaporative resistance = 100s/m

global_a1_cv2_hc0.1_rs200_cheyenne : albedo=0.1, evaporative resistance = 100s/m

global_a3_cv2_hc0.1_rs100_cheyenne : albedo=0.3, evaporative resistance = 100s/m

global_a2_cv2_hc0.1_rs30_cheyenne : albedo=0.2, evaporative resistance = 30s/m

Funding

James S. McDonnell Foundation