Skip to main content
Dryad

BEAM input generation and low exposure routing model

Data files

Aug 09, 2021 version files 44.88 MB

Abstract

The Low Exposure Routing (LER) modeling methodology has already been evaluated at the vehicle level in our previous work. In this study, we propose a novel framework to quantify the impact of LER at the transportation system level applying different technology penetration rates. Under the framework, we employ the truck origin-destination from regional transportation demand model, to generate truck trips in the City of Riverside. Then, the calibrated BEAM model, an agent-based simulation, simulates trips through reinforcement learning and dynamic daily planning technique to reach maximum utility at the transportation system level. Finally, it shows that with a 100% penetration rate of LER and a strict 10% time increase threshold, the air pollutant exposure reduced up to 16% at city level with a slight trade-off of travel time.