Skip to main content
Dryad logo

Data from: Geographic structuring of Antarctic penguin populations

Citation

Santora, Jarrod; LaRue, Michelle; Ainley, David (2021), Data from: Geographic structuring of Antarctic penguin populations, Dryad, Dataset, https://doi.org/10.7291/D1NT0S

Abstract

We hypothesized that regional spatial organization of Antarctic penguin breeding populations was affected by social factors, i.e., proximity and size of adjacent colonies, and by physical factors, i.e., availability of breeding habitat and proximity of polynyas and submarine canyons where prey is abundant. The hypothesis of Furness & Birkhead (1984), that forage competition and density-dependence affect geographic structure of seabird populations, was tested previously for Antarctic penguins when biologging to quantify colony foraging areas was less common and when assessments of colony size reflected a compendium of historical counts. These data on foraging areas and colony size are now available following 20 years of frequent biologging and real-time satellite data on colony locations and sizes. We prepared a literature summary on the basis of biologging studies to improve assessment of foraging ranges. We collated colony sizes from recent sources and integrated them with data on submarine canyon systems and polynyas. We used geospatial models to assess the relations of the latter features to colony size, clustering, and distribution around Antarctica. The equal spacing of emperor penguin colonies was constant, with spacing a function of foraging range. In contrast, colonies of other penguin species were clustered, with small colonies adjacent to one another and within outer edge of the foraging area of large colonies. Colonies and especially clusters occurred near polynyas and canyons around Antarctica. Density-dependent processes and geography explained penguin colony distribution. We conclude that inter- and intraspecific trophic competition affects a geographic structuring of colony distribution and size, although not necessarily in the same way among species. Results are relevant to assessing effects of climate and other factors on penguin population trends at regional scales. We suggest that considering penguin colony distribution and abundance at the regional or cluster level is necessary to understand changes in these attributes

Methods

See Methods and Supplemental Materials for description of data summary and processing.

Usage Notes

A ReadMe file is included in the data package describing the various data layers.

Funding

U.S. National Science Foundation, Award: PRL 1543541

Hogwart’s Running Club administered through the Antarctic and Southern Ocean Coalition