Skip to main content
Dryad

FEHM source code modifications and executables for use with ocean-world gravity

Data files

Nov 27, 2023 version files 195.94 MB
Mar 18, 2024 version files 195.95 MB
Mar 21, 2024 version files 195.95 MB
Jun 07, 2024 version files 195.95 MB

Abstract

This is a repository for compiled codes, source code, and input files used in this paper:

Fisher, A. T., K. D. Dickerson, D. K. Blackman, N. Randolph-Flagg, C. R. German, and C. Sotin (2024), Sustained hydrothermal circulation under ocean-world gravity, J. Geophys. Res. - Planets, submitted and in review.

Plain language summary from paper: Ocean worlds are planetary bodies that have a liquid ocean, often under an icy shell or within the rocky interior. In Earth's solar system, several moons of Jupiter and Saturn are ocean worlds. Some ocean worlds are thought to have hydrothermal circulation, where water, rocks, and heat combine to drive fluids in and out of the seafloor. Hydrothermal circulation would impact the chemistry of the water and rock of ocean worlds and could help life to develop deep below the icy surface. This study shows results from computer simulations of hydrothermal circulation, based on a well-understood system on Earth, to measure the influence of lower gravity like that appropriate for ocean worlds smaller than Earth. The simulations with ocean world (lower) gravity result in fluid circulation much like that occurring on and below Earth's seafloor, but with several important differences. Lower gravity reduces buoyancy, meaning warmed fluids don't become as light when heated. Lower buoyancy tends to reduce flow rates in a hydrothermal system, and this raises the temperatures of the circulating fluid, which would allow more extensive chemical reactions. Lower flow means less heat transport, and this could help these flows last longer in an ocean world.