SM 2
a) Best fitted evolutionary model results

Sample-size corrected Akaike information criterion (AIC) for the Equal-rates model (ER), symmetric model (SYM), and All-Rates-Different model (ARD), using the "fitDiscrete" function from the "Geiger" library version 2.0.6.2 for each parameter:

	ER	ARD	SYM
Size	1336.081	1189.570	1212.930
Loco	599.3784	$\mathbf{5 6 4 . 2 0 2 2}$	599.3784
Eco	916.9169	$\mathbf{8 7 6 . 9 1 7 1}$	916.9169

The best model corresponds to the model with the lowest AIC scores. Here it is the All-RatesDifferent model for each of the tested parameter.
b) Analysis on multiple trees

- Size

1000 trees with a mapped discrete character with states: large, medium, small

The trees have 209.335 changes between states on average
Changes are of the following types:

large,medium	large,small	medium,large	medium,small	small,large	small,medium
75.803	0.251	12.697	49.051	0	71.533

Mean total time spent in each state is:

	large	medium	small	total
raw	2805.9561813	$1.087159 \mathrm{e}+04$	8333.039577	22010.59
prop	0.1275097	$4.939993 \mathrm{e}-01$	0.378491	1.00

If we compare these results to the 500 simulations on the consensus tree:
500 trees with a mapped discrete character with states: large, medium, small
The trees have 207.742 changes between states on average
Changes are of the following types:

large,medium	large,small	medium,large	medium,small	small,large	small,medium
76.226	o	11.166	51.708	o	68.642

Mean total time spent in each state is:

	large	medium	small	total

raw	2842.9959787	$1.101899 \mathrm{e}+04$	8367.1391505	22229.13
prop	0.1278951	$4.957006 \mathrm{e}-01$	0.3764043	1.00

- Locomotion

1000 trees with a mapped discrete character with states: large, medium, small
The trees have 89.43 changes between states on average
Changes are of the following types:

hopping,walking	walking,hopping
78.86	10.57

Mean total time spent in each state is:

	hopping	walking	total
raw	$1.005399 \mathrm{e}+04$	$1.195660 \mathrm{e}+04$	22010.59
prop	$4.566848 \mathrm{e}-01$	$5.433152 \mathrm{e}-01$	1.00

500 trees with a mapped discrete character with states: large, medium, small

The trees have 89.224 changes between states on average
Changes are of the following types:

hopping,walking	walking,hopping
78.312	10.912

Mean total time spent in each state is:

	hopping	walking	total
raw	$1.011909 \mathrm{e}+04$	$1.211004 \mathrm{e}+\mathrm{O} 4$	22229.13
prop	$4.552176 \mathrm{e}-01$	$5.447824 \mathrm{e}-01$	1.00

- Ecology

1000 trees with a mapped discrete character with states: large, medium, small
The trees have 186.046 changes between states on average
Changes are of the following types:

Ground,Tree	Tree,Ground
46.66	139.386

Mean total time spent in each state is:

	Ground	Tree	total
raw	$1.250389 \mathrm{e}+04$	9506.6967852	22010.59
prop	$5.681275 \mathrm{e}-01$	0.4318725	1.00

500 trees with a mapped discrete character with states: large, medium, small

The trees have 185.462 changes between states on average
Changes are of the following types:

Ground,Tree	Tree,Ground
48.268	137.194

Mean total time spent in each state is:

	Ground	Tree	total
raw	$1.273092 \mathrm{e}+04$	9498.2065161	22229.13
prop	$5.727135 \mathrm{e}-01$	0.4272865	1.00

Conclusion: The overall results are similar between the stochastic mapping of 10 simulations over the 100 trees and the 500 simulations over the consensus tree.

