Fig. 1. Soluble sugar contents of 4-week old plants grown on soil. **A** Sugar levels of tst1-2 mutant, tst1-2::BvTST2.1 overexpressor line 18 and 23 and the corresponding wild-type. Data are presented as mean $\pm SE$ of at least 6 biological replicates. **B** Sugar levels of BvSUC4 overexpressor line 5 and 6 and the corresponding wild-type. Data are presented as mean $\pm SE$ of at least 4 biological replicates. Asterisks indicate statistically significant differences between the tst1-2::BvTST2.1 lines or between the BvSUC4 lines and the corresponding wild-type analyzed with Students t-test (* $p \le 0.05$; *** $P \le 0.001$). **Fig. 2.** Elucidation of BvTST2.1's $in\ vivo$ function using $N.\ benthamiana$ infiltration assay. **A** Schematic drawing of a $N.\ benthamiana$ leaf infiltrated with Agrobacteria harboring different expression constructs. **B** Normalized expression of BvTST2.1 and NbVIF in infiltrated leaf tissue area. **C** Soluble sugar levels of leaf tissue harvested 4 days after infiltration. Data are presented as mean \pm SE of at least 6 biological replicates. Asterisks indicate statistically significant differences analyzed with Students t-test (**** P<0.001). P19 = P19 protein of $tomato\ bushy\ stunt\ virus$, a suppressor of gene silencing (Voinnet et al., 2003); NbVIF = inhibitor protein of $N.\ benthamiana\ vacuolar\ invertase$. Fig. 3. Molecular, biochemical characterization and soluble sugar content of 4-week old wild-type plants and amiR vi1-2 lines 4 and 5. A Normalized relative expression level of vacuolar invertase (VI) 1 and 2 in leaf samples Data are presented as mean $\pm SE$ of 4 biological replicates. B Acidic invertase activity in leaf samples. Data are presented as mean $\pm SE$ of 5 biological replicates. C Sugar levels in leaves of 4-week old plants grown on soil. Data are presented as mean $\pm SE$ of 6 biological replicates. Asterisks indicate statistically significant differences between the wild-type and the amiR vi1-2 lines analyzed with Students t-test (**** P \leq 0.001). **Fig. 4.** Analysis of subcellular sugar distribution of 4-week old wild-type plants and *amiR vi1-2* lines 4 and 5 after non-aqueous fractionation. Subcellular distribution of glucose (**A**), fructose (**B**) and sucrose (**C**). Data are presented as mean \pm SE of 4 biological replicates consisting of 3 plants each. Asterisks indicate statistically significant differences between the wild-type and the *amiR vi1-2* lines analyzed with Students t-test (* P \leq 0.05; ** P \leq 0.01; *** P \leq 0.001). **Fig. 5.** Effects of dark treatment on plant phenotype and sugar levels of wild-type plants and *amiR vi1-2* lines 4 and 5 after germination for 7 days in darkness. **A** Etiolated seedlings. **B** Analysis of etiolated shoot lengths. Data are presented as mean ±SE of at least 30 biological replicates. **C** Sugar levels in etiolated seedlings. Data are presented as mean ±SE of 3 biological replicates. **D** Total hexose levels in etiolated seedlings. Data are presented as mean ±SE of 3 biological replicates. Asterisks indicate statistically significant differences between the wild-type and the *amiR vi1-2* lines analyzed with Students t-test (*** P≤0.001). **Fig. 6.** Analysis of rosettes, seeds and siliques of wild-type plants and *amiR vi1-2* lines 4 and 5. **A** Rosette size of 3- to 5-week old plants. Bar = 5 cm. **B** Analysis of rosette fresh weight of 3- to 5-week old plants. Data are presented as mean ±SE of at least 6 biological replicates. **C** 1000 seed weight. Data are presented as mean ±SE of 3 biological replicates (deriving from the same harvest). **D** Lipid content of mutant seeds was normalized to lipid content of wild-type seeds. Data are presented as mean ±SE of 4 biological replicates. **E** Sugar content in siliques. Data are presented as mean ±SE of 3 biological replicates. Asterisks indicate statistically significant differences between the wild-type and the *amiR vi1-2* lines analyzed with Students t-test (* P≤0.05; ** P≤0.01; *** P≤0.001). Fig. 7. Effects of dark treatment on wild-type plants and $amiR\ vi1-2$ lines 4 and 5. Plants were cultivated for 4 weeks under standard conditions on soil, kept for 5 days in the dark and then recovered for 7 days under standard conditions. A Plants after dark recovery. B Quantification of survivors after dark recovery. Data are presented as mean \pm SE of 3 independent experiments with each 12 plants per line. Sugar levels in leaves after 24 hours (C) and after 72 hours (D) of dark treatment. Data are presented as mean \pm SE of 4 biological replicates. Asterisks indicate statistically significant differences between the wild-type and the $amiR\ vi1-2$ lines analyzed with Students t-test (* $P \le 0.05$; *** $P \le 0.01$; **** $P \le 0.001$). **Fig. 8.** Effects of cold treatment on wild-type plants and *amiR vi1-2* lines 4 and 5. Plants were cultivated for 4 weeks under standard conditions on soil and then transferred for 3 days to 4°C. **A** Relative expression level of *vacuolar invertase* (*VI*) 1 and 2 in cold acclimated wild-type leaf samples. Data are presented as mean ±SE of 4 biological replicates. **B** Sugar levels in cold acclimated leaves. Data are presented as mean ±SE of 6 biological replicates. **C** Analysis of electrolyte leakage of leaves kept in cold (4°C) for 4 days. Data are presented as mean ±SE of at least 8 biological replicates. Asterisks indicate statistically significant differences between the wild-type and the *amiR vi1-2* lines analyzed with Students t-test (*** P≤0.001).