Method references from Graystock, P., Ng, W.H., Parks, K., Tripodi, A.D., Muñiz, P.A., Fersch, A.A., Myers, C.R., McFrederick, Q.S. & McArt, S.H. (2020) Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nature Ecology & Evolution. Article DOI:10.1038/s41559-020-1247-xArticle Data deposit DOI:10.1038/s41559-020-1247-x 1.        Urbanowicz, C. M., Muñiz, P. A. & McArt, S. H. Honey bees and wild bees differ in their preference for and use of introduced floral resources. (2020). 2.        Wiegand, K. M. & Eames, A. J. The flora of the Cayuga Lake Basin, New York. (The University, 1926). doi:10.5962/bhl.title.59518 3.        Medina, B. F. & Medina, V. Central appalachian wildflowers. (2002). 4.        House, H. D. The Wild Flowers of New York. (University of New York Albany, 1918). 5.        Niering, W. A., Olmstead, N. C., Rayfield, S. & Nehring, C. National Audubon Society Field Guide to North American Wildflowers (Eastern Region). (1979). 6.        Ascher, J. S. & Pickering, J. DiscoverLife Bee Species Guide and World Checklist. Available at: http://www.discoverlife.org/mp/20q?guide=Bee_genera. 7.        Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 216, 1–216 (2011). 8.        Grixti, J. C., Wong, L. T., Cameron, S. A. & Favret, C. Decline of bumble bees (Bombus) in the North American Midwest. Biol. Conserv. 142, 75–84 (2009). 9.        Sheffield, C. S., Ratti, C., Packer, L. & Griswold, T. Leafcutter and Mason Bees of the Genus Megachile Latreille(Hymenoptera: Megachilidae) in Canada and Alaska. Can. J. Arthropod Identif. 18, 1–107 (2011). 10.      Schwarz, R. S. & Evans, J. D. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev. Comp. Immunol. 40, 300–10 (2013). 11.      Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–71 (2011). 12.      Solter, L. F. Epizootiology of microsporidiosis in invertebrate hosts. in Microsporidia: Pathogens of Opportunity: First Edition 165–194 (2014). doi:10.1002/9781118395264.ch4 13.      Otti, O. & Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007). 14.      Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013). 15.      Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–6 (2014). 16.      Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008). 17.      Higes, M., Martín-Hernández, R. & Meana, A. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41, 375–392 (2010). 18.      Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. Parasites Wildl. 42, 49–61 (2012). 19.      Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. In native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14, 1–15 (2019). 20.      Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 21, 363–371 (2019). 21.      Bramke, Müller, McMahon & Rolff. Exposure of Larvae of the Solitary Bee Osmia bicornis to the Honey Bee Pathogen Nosema ceranae Affects Life History. Insects 10, 380 (2019). 22.      Brown, M. J. F., Schmid-Hempel, R. & Schmid-Hempel, P. Strong context-dependent virulence in a host-parasite system: reconciling genetic evidence with theory. J. Anim. Ecol. 72, 994–1002 (2003). 23.      Yourth, C. P., Brown, M. J. F. & Schmid-Hempel, P. Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55, 86–90 (2008). 24.      Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91, 421–427 (2000). 25.      Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut parasite have an impaired ability to utilize floral information. Proc. R. Soc. B Biol. Sci. 273, 1073–1078 (2006). 26.      Imhoof, B. & Schmid-Hempel, P. Patterns of local adaptation of a protozoan parasite to its bumblebee host. Oikos 82, 59–65 (1998). 27.      Dill, L. M. Costs of energy shortfall for bumble bee colonies: Predation, social parasitism, and brood development. Can. Entomol. 123, 283–293 (1991). 28.      Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019). 29.      Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015). 30.      Ngor, L. et al. Cross-Infectivity of Honey and Bumble Bee-Associated Parasites Across Three Bee Families. (2020). 31.      Lipa, J. J. & Triggiani, O. Apicystis gen nov and Apicystis bombi (Liu, Macfarlane & Pengelly) comb nov (Protozoa: Neogregarinida), a cosmopolitan parasite of Bombus and Apis (Hymenoptera: Apidae). Apidologie 27, 29–34 (1996). 32.      Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016). 33.      Maharramov, J. et al. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. PLoS One 8, e81475 (2013). 34.      Rutrecht, S. T. & Brown, M. J. F. The life-history impact and implications of multiple parasites for bumble bee queens. Int. J. Parasitol. 38, 799–808 (2008). 35.      Plischuk, S., Meeus, I., Smagghe, G. & Lange, C. E. Apicystis bombi (Apicomplexa: Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hymenoptera: Apidae) in Argentina. Environ. Microbiol. Rep. 3, 565–568 (2011). 36.      Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. H. Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 5, 64–75 (2016). 37.      Tian, T., Piot, N., Meeus, I. & Smagghe, G. Infection with the multi-host micro-parasite Apicystis bombi (Apicomplexa: Neogregarinorida) decreases survival of the solitary bee Osmia bicornis. J. Invertebr. Pathol. 158, 43–45 (2018). 38.      Lacey, L. A. Manual of Techniques in Insect Pathology. Manual of Techniques in Insect Pathology (Academic Press, 1997). doi:10.1016/b978-0-12-432555-5.x5000-3 39.      Fries, I. et al. Standard methods for Nosema research. J. Apic. Res. 52, 1–28 (2013). 40.      Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015). 41.      McFrederick, Q. S. et al. Flowers and Wild Megachilid Bees Share Microbes. Microb. Ecol. 73, 188–200 (2017). 42.      Durrer, S. & Schmid-Hempel, P. Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. B Biol. Sci. 258, 299–302 (1994). 43.      Mullins, J. L., Strange, J. P. & Tripodi, A. D. Why Are Queens Broodless? Failed Nest Initiation Not Linked to Parasites, Mating Status, or Ovary Development in Two Bumble Bee Species of Pyrobombus (Hymenoptera: Apidae: Bombus). J. Econ. Entomol. (2019). doi:10.1093/jee/toz330 44.      Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–45 (2010). 45.      Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018). 46.      King, G. & Zeng, L. Logistic Regression in Rare Events Data. Polit. Anal. 9, 137–163 (2001). 47.      Nelder, J. A. A Reformulation of Linear Models. J. R. Stat. Soc. Ser. A 140, 48 (1977). 48.      Venables, W. N. Exegeses on Linear Models. in Paper presented to the SPlus User’s Conference, Washington DC, 8–9 October 1998 (2000). 49.      R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. URL http//www.R-project.org/ (2018). 50.      Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, (2015). 51.      Brooks, Mollie, E. et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 9, 378 (2017). 52.      Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R Packag. version 0.2.0 https://CRAN.R-project.org/package=DHARMa (2018). doi:10.1016/j.diagmicrobio.2015.06.021 53.      Signorell, A. DescTools: Tools for Descriptive Statistics. (2019). 54.      Wood, S. N., Pya, N. & Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 111, 1548–1563 (2016). 55.      Engels, B. XNomial: Exact Goodness-of-Fit Test for Multinomial Data with Fixed Probabilities. (2015). 56.      Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008). 57.      Oksanen, J. et al. vegan: Community Ecology Package R package version 2.4-3. (2017). Available at: https://cran.r-project.org/package=vegan.