1 Supplement Document:

2 Janus microdimer swimming in oscillating magnetic field

3 Jinyou Yang

5

6

7

8

NUMERICAL METHOD

Boundary element method

9

- In this section, we explain a numerical method for Janus particles swimming in fluid. Due
- to the small size of Janus particle, we neglect inertial effects in the flow field and assume Stokes
- 12 flow. We assume that Janus particles are immersed in incompressible Newtonian fluid with
- viscosity η and density ρ_{liquid} . We also assume the Janus particles located on an infinite plane
- wall of $x_3 = 0$ when investigated the surface walk of Janus particles. In the Stokes flow regime,
- the velocity field around the Janus microdimer in integral form is given by

16
$$u_i(\mathbf{x}) - u_i^{\infty}(\mathbf{x}) = -\frac{1}{8\pi n} \int_{particle} G_{ij}(\mathbf{x} - \mathbf{y}) t_j(\mathbf{y}) dA_c$$
, (1)

- where $\mathbf{u}(\mathbf{x})$ is the velocity at position \mathbf{x} , $\mathbf{u}^{\infty}(\mathbf{x})$ is the background velocity, A_c is the surface of
- the janus microdimer, and \mathbf{t} is the traction force. \mathbf{G} is referred to as free-space Green's function
- or simply the Stokeslet, in the form of

20
$$G_{ij}(\mathbf{x} - \mathbf{y}) = \left(\frac{\delta_{ij}}{r} + \frac{r_i r_j}{r^3}\right),$$
 (2)

- 21 Where $\mathbf{y} = (y_1, y_2, y_3), r = [(x_1 y_1)^2 + (x_2 y_2)^2 + (x_3 y_3)^2]^{1/2},$
- Consider a wall in the x_1 , x_2 plane at $x_3 = 0$, G^w for the half space bounded by a no-slip wall,
- 23 given by:

24

$$G_{ij}^{w}(\mathbf{x} - \mathbf{y}) = \left(\frac{\delta_{ij}}{r} + \frac{r_{i}r_{j}}{r^{3}}\right) - \left(\frac{\delta_{ij}}{R} + \frac{R_{i}R_{j}}{R^{3}}\right) + 2h\left(\delta_{j\alpha}\delta_{\alpha k} - \delta_{j3}\delta_{3k}\right) \frac{\partial}{\partial R_{k}} \left\{\frac{hR_{i}}{R^{3}} - \left(\frac{\delta_{i3}}{R} + \frac{R_{i}R_{3}}{R^{3}}\right)\right\},\tag{3}$$

26

32

where
$$\mathbf{y} = (y_1, y_2, h)$$
, $r = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - h)^2]^{1/2}$, $R = [(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - h)^2]^{1/2}$

- 28 $(x_2 y_2)^2 + (x_3 + h)^2]^{1/2}$ and $\alpha = 1, 2$.
- The surface A of particle is determined by two curvilinear coordinate system(ξ^1, ξ^2),
- which express the coordinate x as $x(\xi, \gamma)$. The normal vector of the surface is given by

31
$$\mathbf{n} = \frac{1}{J} \frac{\partial x}{\partial \xi^1} \times \frac{\partial x}{\partial \xi^2}$$
, with $j = \left| \frac{\partial x}{\partial \xi^1} \times \frac{\partial x}{\partial \xi^2} \right|$, (4)

The Jacobian of the transformation. An infinitely small surface element has area

$$dA_c = I d\xi^1 d\xi^2, \tag{5}$$

To calculate the integral equation, we use a Gaussian numerical integration scheme with a linear interpolation function. This method approximates the integral of function as a weighted sum of function values at specified points within the domain of the element. In this study flat triangles have been used to form the boundary surface. In a given element, the coordinates (ξ^1, ξ^2) are replaced by the intrinsic coordinates in an isoparametric triangular element (γ^1, γ^2) with the interval of [0,1]. The integral is then discretized by:

40
$$\int t(\mathbf{x}) dA_c = \int t(\xi^1, \xi^2) J d\xi^1 d\xi^2 \approx \sum_{element} \int_0^1 \int_0^{1-\gamma^2} t(\gamma^1, \gamma^2) J d\gamma^1 d\gamma^2 =$$
41
$$\frac{1}{2} \sum_{element} \sum_{k=1}^{28} J t(k) w_k,$$
(6)

Note that Eq.(6) includes a singularity. When an observation point x is located near a source point y, a special operation is needed to avoid numerical errors arising from the singularity. For the singular elements, we use a coordinate transformation from (γ^1, γ^2) to polar coordinates (ς, θ) as

Where $R(\theta)$ is the distance from x to the opposite edge of the triangle at angle θ .