
Code used to generate simulation results for MS: Predation can select for later and more synchronous arrival

times in migrating species. Harts, Kristensen & Kokko. In Oikos

This code was designed for use in Matlab. The code generates a few files based on last generation data, it can be

modified to generate data for each generation (not shown).

Words in blue and black are code, annotations are in green.

function[]=arrival_time(X,tmax,P0,initarriv,stdarriv,winterMort,nFocal,nTwo,Nterr,a,b,z,alpha,betaP,

betaG,gen,ms)

% to start a simulation call e.g. arrival_time(850,5,0.05,0.5,0.5,0.1,1000,1000,500,0.5,5,1,0.5,1,2,5000,999)

% X = daily handling time predators have on breeding grounds (a measure of predator abundance)

% tmax = number of arrival days, number of days an individual can arrive on

% P0 = daily mortality during migration period if not arrived yet

% initarriv & stdarriv are for the initial populations arrival time allele, see below for calculation

% migrMort = mortality during migration

% nFocal = total number of individuals of the focal species (initial generation only)

% nTwo = number of alternative prey (i.e. S2) alive at beginning of each spring

% Nterr = total number of territories

% a = predator preference, 1 = S1and 0 = S2, at 0.5 there is no preference

% b = handling time of S1 (has to be < X)

% z = handling time factor such that bz=handling time of S2

% alpha = proportion good territories (e.g. 0.5 means half is good and half is poor)

% betaP and betaG: number of S1 offspring in poor and good territories respectively (beta gives the mean of the

poisson distribution which is #offspring per individual)

% gen = number of generations the simulation runs for

% ms = seed number, allows for replicating a specific simulation

rng(ms) % setting seed for repeatability and independent simulations

mutProb=0.1; mutStep=0.01; % mutation probability and determinant of size of mutation.

%creation of initial population, each individual gets an allele for arrival time (Pop(:,1)) and initial %territorial

state (Pop(:,2)) NaN means not arrived; 0 means floater, -1 means poor terr owner, 1 %means good terr

owner

Pop=max(0,min(1,initarriv+stdarriv*(rand(nFocal,1)-rand(nFocal,1))));

Pop(:,2)=NaN*ones([nFocal 1]);

%data collected

meanArriv=NaN*ones([1 gen]); % mean of arrival alleles in focal population (S1)

S1spring=NaN*ones([1 gen]); % number of S1 at start of each generation

nof_arrived=NaN*ones([tmax gen]); % number of S1 arrived this time within each generation

dead_arrived=NaN*ones([tmax gen]); % actual number of S1 predated on breeding grounds / gen.

dead_nonarrived=NaN*ones([tmax gen]); % actual number of S1 predated on nonbreeding grounds /gen.

prodOff=NaN*ones([1 gen]); % number of offspring produced this gen

track_S2=NaN*ones([tmax gen]); % number of S2 on each day t after predation during arrival S1

arrivHist=NaN*ones([1 tmax]); % distribution of arrival allele in the last generation

for g=1:gen % start of new gen.

 S2=nTwo; % each gen starts with the same number of individuals of S2

 RF=0; % RF is number of floaters that have arrived, at start of each gen it is set to 0

 meanArriv(g)=mean(Pop(:,1)); % calculate the mean arrival allele within the population for gen=g

 S1spring(g)=length(Pop(:,1)); % calculate number of S1at start of gen=g

 for t=1:tmax % arrival day within a gen.

 % territory availability update

 aG=alpha*Nterr-sum(Pop(:,2)>0); % good territories still available

 aP=(1-alpha)*Nterr-sum(Pop(:,2)<0); % poor territories still available

 % find those who are arriving now OR are floating, and

 % randomize the order in which they are allowed to take territories

 if t<tmax

 f=vectperm(find(((Pop(:,1)>=(t-1)/tmax) & (Pop(:,1)<t/tmax)) | (Pop(:,2)==0)));

 else % on t=tmax

 f=vectperm(find(((Pop(:,1)>=(t-1)/tmax) & (Pop(:,1)<(t+1)/tmax)) | (Pop(:,2)==0)));

 end

 %arrival and territory assignment (within each time t)

 for j=1:length(f)

 if aG>0 % if there are good territories available

 aG=aG-1; % one good territory less available

 Pop(f(j),2)=1; % this indiv. is now the owner of a good terr

 elseif aP>0 % else if there are poor terr available

 aP=aP-1; % one less poor territory available

 Pop(f(j),2)=-1; % this indiv. is now the owner of a poor terr

 else

 RF=RF+1; % one more floater

 Pop(f(j),2)=0; % this indiv. is now a floater

 end

 end

 % predation of all individuals that have arrived at breeding site

 % S1 denotes the number of indiv. arrived at time t

 arrived=find(Pop(:,1)<=(t/tmax)); S1=length(arrived);

 nof_arrived(t,g)=S1; % data collection, individuals at breeding ground after arrival

 % number of eaten individuals of species 1

 est_dead1=min(S1,((a*S1*X)/(1+(a*b*S1)+((1-a)*(b*z*S2))))); % unrounded # of indiv. to die

 prob_dead1=est_dead1-round(est_dead1); % difference between two integers becomes the prob.

 if rand(1)<prob_dead1 % if random number is smaller than difference (probability)

 dead1=round(est_dead1)+1; % than it will become the larger integer

 else

 dead1=round(est_dead1); % else the smaller integer

 end

 dead_arrived(t,g)=dead1; % data collection, S1 indiv. died per t from predation

 doomed=picksurv(ones([1 S1]),dead1); % pick the indiv. that will be predated

 Pop(arrived(doomed),:)=[]; % remove these individuals from population

 % the 2nd species dies in a simpler manner as identities don't have to be tracked

 dead2=min(S2,round(((1-a)*S2*X)/(1+(a*b*S1)+((1-a)*(b*z*S2)))));

 S2=S2-dead2; % mortality updates the number of second species present

 track_S2(t,g)=S2; % data collection, tracking S2

 % finally, daily mortality of individuals that have not yet arrived on breeding grounds

 if t<tmax % because everybody has arrived on day tmax

 notarrived_and_dead=find(Pop(:,1)>=(t/tmax) & rand([size(Pop,1) 1])<P0);

 dead_nonarrived(t,g)=length(notarrived_and_dead); % data collection

 Pop(notarrived_and_dead,:)=[]; % remove

 end

 if t==tmax % last time step t, fill remaining territories with floaters

 bG=alpha*Nterr-sum(Pop(:,2)>0); % good terr. available

 bP=(1-alpha)*Nterr-sum(Pop(:,2)<0); % poor terr. available

 fl_tmax=vectperm(find(Pop(:,2)==0)); % to create random selection of floaters to good and poor

 for k=1:length(fl_tmax)

 if bG>0 % if there are good territories available

 bG=bG-1; % one good territory less available

 Pop(fl_tmax(k),2)=1; % this ind is now the owner of a good terr

 elseif bP>0 %else if there are poor terr available

 bP=bP-1; %one less poor territory available

 Pop(fl_tmax(k),2)=-1; % this nFocal is now the owner of a poor terr

 end

 end

 end

 end

 % Post arrival:

 % reproduction & mutation

 allNew=[]; % vector to collect new indiv. in

 for q=1:length(Pop(:,1))

 nOff=0; New=[];

 if Pop(q,2)>0 % individuals with a good breeding territrory

 nOff=poissrnd(betaG); %number of offspring produced at a good site, average=betaG

 elseif Pop(q,2)<0 % individuals with a poor breeding territrory

 nOff=poissrnd(betaP); %number of offspring produced at a poor site, average=betaP

 end

 if nOff>0

New=max(0,min(1,((Pop(q,1)*ones([nOff 1]))+((rand(nOff,1)<mutProb).*(randn(nOff,1)*mutStep)))));

% offspring inherit parent's arrival time & mutation may occur

 New(:,2)=zeros([nOff 1]); % offspring start as floater

 allNew=[allNew;New];

 end

 end

 prodOff(g)=length(allNew);

 Pop=[Pop;allNew]; % offspring join adult population

 % mortality in the migration & wintering season

 Pop(rand(size(Pop,1),1)<winterMort,:)=[]; %mortality during migration & overwintering

 % get the distribution of arrival time allele in the last generation

 if g==gen

 for p=1:tmax

 if p<tmax

 arrivDoc=find((Pop(:,1)>=(p-1)/tmax) & (Pop(:,1)<p/tmax));

 else

 arrivDoc=find((Pop(:,1)>=(p-1)/tmax) & (Pop(:,1)<(p+1)/tmax));

 end

 arrivHist(p)=length(arrivDoc);

 end

 end

 % the annual cycle ends by all individuals getting status NaN, i.e. they have not arrived yet

 Pop(:,2)=NaN;

 % save datafiles

 save('meanArriv','meanArriv'); save('S1spring','S1spring');

 save('nof_arrived','nof_arrived'); save('dead_arrived','dead_arrived');

 save('dead_nonarrived','dead_nonarrived'); save('prodOff','prodOff');

 save('track_S2','track_S2'); save('arrivHist','arrivHist');

end

