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Abstract 
 
Advances in technology allow the acquisition of data with high spatial and temporal resolution.  These 

datasets are usually accompanied by estimates of the measurement uncertainty, which may be 

spatially or temporally varying and should be taken into consideration when making decisions based 

on the data.  At the same time, various transformations are commonly implemented to reduce the 

dimensionality of the datasets for post-processing, or to extract significant features. However, the 

corresponding uncertainty is not usually represented in the low-dimensional or feature vector space.  

A method is proposed that maps the measurement uncertainty into the equivalent low-dimensional 

space with the aid of approximate Bayesian computation, resulting in a distribution that can be used 

to make statistical inferences. The method involves no assumptions about the probability distribution 

of the measurement error and is independent of the feature extraction process as demonstrated in 

three examples. In the first two examples Chebyshev polynomials were used to analyse structural 

displacements and soil moisture measurements; while in the third, principal component analysis was 

used to decompose global ocean temperature data. The uses of the method range from supporting 

decision making in model validation or confirmation, model updating or calibration and tracking 

changes in condition, such as the characterisation of the El Niño Southern Oscillation.  

 

Usage Notes:  

The source code and datasets used to produce the results in the paper are included in two folders. 

The one labelled Chebyshev_based uses 2D Chebyshev polynomials to decompose spatial datasets 

and includes the I-beam and soil-moisture data. The folder named PCA_based uses principal 

component analysis (PCA) to decompose global temperature oceanographic data. MATLAB is 

needed to load the data and run the code. In order to comply with the CC0 license, some files 

needed to execute the algorithm must be downloaded directly from Umberto Picchini’s github 

repository (https://github.com/umbertopicchini/abc_g-and-k). These files are: param_mask.m , 

param_unmask.m and cov_update.m. Download and include them in the same directory along the 

rest of the files.  

 

https://github.com/umbertopicchini/abc_g-and-k


Content  

The root scripts needed to reproduce the results of the paper are the: gk_EXPERIMENTAL_DATA.m 

and gk_EXPERIMENTAL_DATA_PCA.m.  

 

• gk_EXPERIMENTAL_DATA.m the main script where all the following functions connect onto.  

• gk_EXPERIMENTAL_DATA_RUN_modelsimulate.m reconstructs the drawn feature vector during 

the approximate Bayesian computation into a spatial dataset.  

• gk_EXPERIMENTAL_DATA_RUN_prior.m returns the product of independent priors for the feature 

vector.  

• gk_EXPERIMENTAL_DATA_RUN_summaries_v2: calculation of pixel-wise differences.  

• cov_update updating of the covariance matrix.  

• abcmcmc_ABC_EXPERIMENTAL_V3: the ABC-MCMC algorithm that draws samples from the 

posterior distribution.  

• newTchebDecomp decomposes the spatial data into a feature vector using Chebyshev 

polynomials.  

• newTchebRecon reconstructs a feature vector into its spatial form using Chebyshev polynomials.  

• newTchebRecon_MODIFIED same as the previous with minor modifications added to speed up the 

process of the Chebyshev polynomial generation during ABC.  

• Reconstruction_Using_FULL_Kernels reconstructs a feature vector into its spatial form using 

Chebyshev polynomials and provides a series of plots to help identify the quality of decomposition.  

• Reconstruction_Using_Less_Kernels reconstructs a feature vector into its spatial form using a 

subset of the initial kernels used for its decompositions  

• tm_kernel_weighting assists in the selection of the important kernels during decomposition so that 

the dimensionality of the spatial data is decreased.  

 

The corresponding algorithms in the PCA_based folder perform the same tasks.  

Settings  

For the datasets where Chebyshev polynomials are used the choices regarding the execution of the 

algorithms are made in the script named gk_EXPERIMENTAL_DATA.m  



Dataset loading 

One can select which dataset to load by uncommenting the corresponding line. For the I-Beam case 

this is done by uncommenting one of lines 22-23 and then establishing that the correct measurement 

uncertainty (spatially constant) is defined in line 42 by assigning the value to the meas_unc_mean 

variable.  

For the case of spatially varying measurement uncertainty the user must establish that the uncertainty 

field has the same size as the measured one. For the case of the soil moisture data one can 

uncomment lines 50-55 to reproduce the results.  

Selection of no. of coefficients/kernels  

This is done in line 87. The selection should be made following the guidelines outlined in the paper.  

Selection of number of evaluations  

This is done in line 144 in variable R_mcmc. This selection is a function of the dimensionality of the 

problem i.e. the higher the number of kernels used to decompose the dataset more evaluations 

should take place. A good starting value is 30000 for relatively low dimensional problems (up to 9-10 

kernels). This could go up to hundreds of thousands in high dimensions (more than 100).  

Output (for the case of Chebyshev polynomials)  

It should be noted that the resulting posterior samples saved in the ABCMCMC_pilot variable are 

sorted in terms of significance. This means that if the fifth shape descriptor is the one with the largest 

magnitude in the measurement’s feature vector then it will be in the first column. The order of the 

shape descriptors can be shown using the command positions(tm_ind_less_kernel) .  

Output (for the case of PCA)  

The coefficients of the components are ordered in descending order. This means that the coefficients 

corresponding to the first PC are in the first column, the coefficients corresponding to the second PC 

in the second column and so on.  

Visualizing the output  

This could be done using the command corrplot(ABCMCMC_pilot) – Beware of memory limitations for 

cases with a big number of kernels. The practitioner should be aware of the initial transitory effects 

during which the MCMC algorithm adapts its covariance matrix to become more efficient. This means 

that certain initial evaluations during the period known as the burn-in should be excluded from the 

final distribution. These should normally be less than 5000-10000 evaluations depending on the 

behaviour of the algorithm and the dimensionality of the data. 



Comparison with model predictions 

Model predictions for the I-beam displacement data can be found in the Chebyshev_based folder 

(FE_UY_DISPL_ROI_1.mat and FE_UY_DISPL_ROI_2.mat) for the regions of interest at the middle 

and the side of the I-beam respectively. A visual comparison with the outputs of the ABC results is 

possible only when the same set of coefficients is used during the decomposition of  the measured 

and the predicted fields.  

 

The sources of the data are: 

Oceanographic data 

Gaillard, F. (2015).  ISAS-13 temperature and salinity gridded fields.  SEANOE.  https://doi. 

org/10.17882/45945 . – Open Access.  

 

The TEMP-DATA-UNCERTAINTY-DEPTH-10M-4-ROW.mat file provided in the PCA_based folder 

ensures that all the data needed to reproduce the results of the paper are in one place.  Moreover, it 

removes the burden of loading and pre-processing the data into a format that can be used for further 

analysis (the pre-processing steps have been described in the paper). It is important to point out that 

the 132 temperature and uncertainty fields inside the file correspond to an ocean depth of 10m. 

 

I-beam displacement data 

Lampeas G., Pasialis V., Lin X., and Patterson E. A. (2015) ‘On the validation of solid mechanics 

models using optical measurements and data decomposition’.  Simulation Modelling Practice and 

Theory, 52: pp. 92-107 – Authors have agreed to share the data. 

 

Both the measurements (DIC_UY_DISPL_ROI_1.mat, DIC_UY_DISPL_ROI_2.mat) and the finite 

element predictions (FE_UY_DISPL_ROI_1.mat, FE_UY_DISPL_ROI_2.mat) for the regions of 

interest at the middle and the side of the I-beam have been generously provided by Lampeas et al.  

 

 

Soil moisture data 

Kang, J., Jin, R., Li, X. and Zhang Y.  (2017).  ‘Block kriging with measurement errors: A case study of 

the spatial prediction of soil moisture in the middle reaches of Heihe River Basin’.  IEEE Geosci.  

Remote Sens.  Lett.  14: pp. 87–91. – The soil moisture data used in the paper are the result of 

digitization of figure 5 (right side BKHEME) in Kang et. al. 

 

The file containing the soil moisture data is SOIL_MOISTURE_DATA.mat.  

  


