
1

Handwriting BCI Dataset Documentation

Overview

These data are reported in Willett et al. 2021 and consist of ten separate sessions (listed below in

“Session Table”). The unprocessed data reside in the “Datasets” folder. Processed versions of the data

reside in the “RNNTrainingSteps” folder, which includes time-warped data, HMM-generated data labels,

and RNN decoders (see the accompanying code repository https://github.com/fwillett/handwritingBCI).

All data files are .mat files that can be loaded with MATLAB or Python (using the scipy function

scipy.io.loadmat). The “BigramLM” folder contains Kaldi language model files for running the bigram

language model.

Session Table

Date (Trial Day) Description Data
2019.05.08 (994) Sentence and character writing

pilot day (no real-time decoding)
• Sentence writing collected as training

data (102 sentences, no decoding)

• Single character writing (27 repetitions
per character)

2019.06.03 (1020) Attempted handwriting of
straight lines

• Instructed delay straight-line writing (24
repetitions each for 48 straight-line
conditions)

2019.11.25 (1195) Real-time decoding pilot day • Sentence writing for training data (50
sentences, no decoding)

• Sentence writing for performance
evaluation (34 sentences, with real-time
decoding)

• Single character writing (10 repetitions
per character)

2019.12.09 (1209) Real-time decoding pilot day

2019.12.11 (1211) Copy-typing evaluation

2019.12.18 (1218) Copy-typing evaluation

2019.12.20 (1220) Copy-typing evaluation

2020.01.06 (1237) Copy-typing evaluation

2020.01.08 (1239) Copy-typing evaluation

2020.01.13 (1244) Free-answer evaluation • Sentence writing with artificial pauses
(30 sentences, no decoding)

• Phrase writing from memory (100
phrases, no decoding)

• Sentence writing for performance
evaluation (25 free-answer questions)

• Single character writing (10 repetitions
per character)

2020.01.15 (1246) Free-answer evaluation

https://github.com/fwillett/handwritingBCI

2

Raw Datasets

For sessions containing characters and sentences data (all sessions except 2019.06.03), raw data is

contained in two .mat files: singleLetters.mat (containing trials where participant T5 attempted to write

isolated characters) and sentences.mat (containing trials where T5 attempted to write complete

sentences). For session date 2019.06.03, instead of singleLetters.mat there is a straightLines.mat file

with the same data format, except containing attempted straight-line movements (single, straight pen

strokes) as opposed to complete characters.

The neural data contained in these files consists of binned spike counts (10 millisecond bins). Binned

spike counts are integer values equal to the number of times the voltage time series on a given

electrode crossed a -3.5*RMS threshold during that time bin. The thresholds were kept consistent

throughout an entire session (but differ from session to session). Binned threshold crossing counts are a

simple way to quantify the amount of spiking neural activity occurring during a time window, and have

been shown to perform comparably to spike-sorted single neurons for both brain-computer interfaces

(Christie et al., 2014) and for investigating the structure of neural population activity (Trautmann et al.,

2019).

The neural recordings are from two 96 channel microelectrode arrays (Utah arrays) implanted in hand

knob area of precentral gyrus. The image below shows the array locations (the red line on the brain

denotes the central sulcus).

Single Letters

Overview

The singleLetters.mat files contain neural data recorded while participant T5 attempted to write single

letters and symbols according to text cues displayed on a computer monitor in an instructed delay

paradigm (no real-time handwriting decoding occurred during these blocks). Each trial first began with a

delay period or variable length, during which a single character appeared on the screen above a red

square. During the delay period, T5 waited and prepared to write that character. Then, the red square in

the center of the screen turned green (go cue), instructing T5 to immediately begin trying to write the

character. After the 1 second go period, the next trial’s delay period began immediately.

3

Variables

neuralActivityCube_{x}: These are 3-dimensional neural data tensors, each containing the neural

activity recorded while T5 attempted to write the character {x}. These tensors have dimensionality K x T

x N, where K is the number of trials, T is the number of time steps (201), and N is the number of

electrodes (192). Each element is the binned threshold crossing count observed for a single trial, time

step and electrode. The data have been aligned such that time step 51 corresponds to the go cue time.

These tensors can be used to quickly analyze the data, including averaging over multiple trials to denoise

the neural activity. They were created from neuralActivityTimeSeries and are included for convenience.

Trials were placed into each cube in the order in which they occurred during the session.

neuralActivityTimeSeries: A time series of binned spike counts for all 192 electrodes and all 10

millisecond time steps of data. The first 96 channels correspond to array 1 (the more lateral array) and

the last 96 channels correspond to array 2 (the more medial array). Note that there are discontinuous

breaks in the time series whenever the block number changes (neural activity recorded in between

blocks was not saved).

clockTimeSeries: A time series of the system clock time, in seconds, for each time 10 millisecond time

step of data. The clock time resets to 0 at the beginning of each new block.

blockNumsTimeSeries: A time series of the current block number, for each 10 millisecond time step.

This can be used to determine the block during which any time step of data was recorded.

goCueOnsetTimeBin: Each element i indicates the time step on which the go cue was given for trial i.

delayCueOnsetTimeBin: Each element i indicates the time step on which the delay period began for trial

i.

characterCues: Each element i is a string representation of the character that T5 was cued to attempt to

write for trial i (the strings match the names of the neuralActivityCubes). Note that t5.2019.05.08 is a

unique session in that it contains one additional cue not tested on any other session: ‘doNothing’.

During this condition, T5 was instructed to sit idly and perform no motor action.

blockList: A list of the blocks included in this dataset. The block numbers do not necessarily start at 1

and may skip numbers.

blockStartDates: An array of date strings that describe the start time of each block (up to 1 second

resolution). Can be used to understand how much time passes between blocks.

meansPerBlock: Each row i of this matrix represents the mean spike count observed on each electrode

during the ith block. This can be easily computed from neuralActivityTimeSeries and

blockNumsTimeSeries, and is included only for convenience (as some of our post-processing steps use

this).

stdAcrossAllData: This vector represents the standard deviation of the spike count observed on each

electrode. This can be easily computed from neuralActivityTimeSeries and blockNumsTimeSeries, after

subtracting the mean within each block. It is included only for convenience (as some of our post-

processing steps use this).

4

arrayGeometryMap: A matrix where each entry (i,j) contains the electrode number that is at location

(i,j) on the physical microelectrode array. Increasing values of i (rows) move towards the central sulcus

(along the anterior-posterior axis) and increasing values of j (columns) move medially along the

precentral gyrus (medial-lateral axis). Note that the electrodes are spaced 0.4 mm apart on the

microelectrode array.

Sentences

Overview

The sentences.mat files contain neural data recorded while participant T5 attempted to write complete

sentences according to text cues displayed on a computer monitor in an instructed delay paradigm. For

some of the trials, no real-time handwriting decoding was performed; these data were used to train the

RNN decoder during the session. In other trials, the RNN decoder was operating in real-time as T5

attempted to write the sentence; these data were used to evaluate the real-time decoder performance.

Each trial first began with a delay period lasting 5 seconds, during which a sentence (or question)

appeared on the screen above a red square. During the delay period, T5 waited and prepared to write

that sentence (or answer the question). Then, the red square in the center of the screen turned green

(go cue), instructing T5 to immediately begin trying to write the sentence. When T5 determined that he

was finished writing, he turned his head to the right. Our system automatically detected rightward head

turns and used this signal to trigger the next trial.

There are four types of sentence writing trials: sentence copying (the most common), sentence copying

with artificial pauses, copying phrases from memory, and freely answering question prompts. The last

three types of trials occurred only in the two “free-answer” sessions, which were designed to evaluate

the RNN decoder’s performance on freely composed sentences. The training data for the free-answer

sessions was designed to create more variability in T5’s handwriting, in an attempt to make the RNN

decoder more robust to pauses and changes in writing speed. We briefly describe these trial types

below.

• Sentence copying with artificial pauses: For these sentences, we randomly inserted hash mark

symbols (#) throughout the sentence. T5 was instructed to take a brief (~1 second) pause

whenever he came across a hash mark symbol.

• Copying phrases from memory: In these trials, T5 copied short (1-4 word) phrases from memory.

During the delay period, T5 memorized the phrase. During the go period, the phrase

disappeared from the screen, forcing him to write it from memory instead of copying.

• Freely answering question prompts: In these trials, T5 answered a question prompt that

appeared on the screen with a sentence of his own choosing. Many of these trials contain a long

pause after the go cue, since T5 used this time to think of an answer to the question and

compose his response before beginning to write it.

Variables

neuralActivityCube: For convenience, the neural activity recorded during all of the sentences has been

assembled into a 3D tensor of dimension S x T x N (S sentences, T time steps, and N electrodes). Each

element contains the binned spike count observed for that sentence, time step and electrode. This

tensor can be fully reconstructed from neuralActivityTimeSeries and is included only to be helpful. Note

5

that the time dimension was extended to be as long as the longest sentence. Thus, all other sentences

end earlier than T and contain excess data from the following sentence(s). Use

numTimeBinsPerSentence to determine how many time steps each sentence lasts.

sentencePrompt: An array of strings, each entry i indicating the text prompt for sentence i. The

sentences are all lower case with some punctuation: periods, commas, question marks, apostrophes and

spaces. Spaces are indicated with a greater than sign (>) in these strings (since T5 wrote this sign to

denote a space). Periods are indicated with a tilde (~) in these strings (since T5 wrote this sign to denote

a period). For most blocks, T5 was instructed to copy this text prompt. However, in the free answer

blocks, T5 responded to the prompt with his own sentence. In the sentences with # symbols, T5 was

instructed to pause briefly whenever he encountered a # symbol (instead of writing the # symbol; see

above ‘Overview’ section).

intendedText: An array of strings, each entry i indicating the text that T5 intended to write. This is equal

to sentencePrompt except in two cases: sentences with hash marks (which cue T5 to take an artificial

pause) and free writing sentences. For sentences with hash marks, we removed them here (since T5 did

not write these). For the free writing sentences, we determined T5’s intended sentence by discussing

with him after each sentence his intended meaning. Note that these are only approximate, mainly

because T5 may have made spelling errors (T5 reported several times that he was not good at spelling

and was uncertain of how to spell certain words). We did not review each word with T5 to determine

how he intended to spell each one. Also, T5 was inconsistent with punctuation – sometimes he chose to

end his sentences with periods, and other times he did not. Since we did not check with T5 after each

sentence whether he intended to end it with a period, we decided to remove all periods from

intendedText (and, when we computed the character error rate for our RNN decoder, ignored periods).

numTimeBinsPerSentence: Each element i indicates the number of time steps that sentence i lasted.

sentenceCondition: Each entry i contains a string describing the experimental condition under which

sentence i was collected. There are six possible conditions listed below.

• ‘OL Copy’: copying the sentence prompt in “open-loop” (i.e. with no real-time decoder).

• ‘OL Copy With Pauses’: copying the sentence prompt while artificially pausing whenever a #

symbol is encountered.

• ‘OL Copy from memory’: copying the sentence prompt from memory.

• ‘CL Pandarinath’: copying the sentence prompt in “closed-loop” (i.e. with the real-time decoder

running). These sentences are always the same 7 sentences used in (Pandarinath et al., 2017)

and were collected for a direct comparison to this prior work.

• ‘CL Corpus’: copying the sentence prompt in closed-loop, with the sentence prompts drawn at

random from the BNC.

• ‘CL Free Write’: answering the question prompt freely in closed-loop.

sentenceBlockNums: Each entry i indicates the block number during which sentence i was recorded.

excludedSentences: Each entry i contains a 1 if this sentence was (and should be) excluded from

analysis. 33 out of a total of 1,000 sentences are marked as excluded (3.3%). This typically occurred

whenever our system accidentally detected a head turn from T5 and triggered the next trial before he

was actually finished, making these sentences incomplete. Additionally, for the free typing trials, we

6

removed one sentence where T5 could not think of a response and wanted to skip the question, and

one sentence where we were unable to determine T5’s intended spelling of a restaurant name. In one

copy typing session (2020.01.06), a software bug incorrectly initialized the RNN decoder at the

beginning of each evaluation block; for this session, we excluded the first trial of each evaluation block

(4 trials total). Finally, in some copy-from-memory trials, T5 indicated to us that he had forgotten the

phrase – when this occurred, we marked the trial as excluded.

neuralActivityTimeSeries: A time series of binned spike counts for all 192 electrodes and all 10

millisecond time steps of data. The first 96 channels correspond to array 1 (the more lateral array) and

the last 96 channels correspond to array 2 (the more medial array). Note that there are discontinuous

breaks in the time series whenever the block number changes (neural activity recorded in between

blocks was not saved).

clockTimeSeries: A time series of the system clock time, in seconds, for each time 10 millisecond time

step of data. The clock time resets to 0 at the beginning of each new block.

blockNumsTimeSeries: A time series of the current block number, for each 10 millisecond time step.

This can be used to determine the block during which any time step of data was recorded.

blockList: A list of the blocks included in this dataset. The block numbers do not necessarily start at 1

and may skip numbers.

blockStartDates: An array of date strings that describe the start time of each block (up to 1 second

resolution). Can be used to understand how much time passes between blocks.

goCueOnsetTimeBin: Each element i indicates the time step on which the go cue was given for trial i.

delayCueOnsetTimeBin: Each element i indicates the time step on which the delay period began for trial

i.

sentenceEndTimeBin: Each element i indicates the time step at which sentence i was finished.

arrayGeometryMap: A matrix where each entry (i,j) contains the electrode number that is at location

(i,j) on the physical microelectrode array. Increasing values of i (rows) move laterally down the

precentral gyrus and increasing values of j (columns) move towards the central sulcus. Note that the

electrodes are spaced 0.4 mm apart on the microelectrode array.

rnn_charProbTimeSeries: A time series of the character probabilities output by the RNN decoder for

each 10 millisecond time step. Entries are equal to zero during blocks where the real-time decoder was

not active. The mapping between columns and characters is defined by rnn_charMapASCII (column i

corresponds to the character contained in the ith entry of this map).

rnn_newCharTimeSeries: A time series of the new character signal output by the RNN decoder for each

10 millisecond time step. This signal was thresholded (threshold = 0.3) to determine when to output a

new character during real-time decoding.

rnn_decodedCharTimes: A matrix where each row i corresponds to a single decoded character by the

RNN. Column 1 indicates the time step on which that character was decoded, and column 2 indicates

which character was decoded (with an integer value that indexes into rnn_charMapASCII). This matrix

7

can be used to determine when exactly the RNN decoded each character (i.e. when that character was

displayed on the screen).

rnn_decodedText: Each entry i is a string containing the text that the RNN decoded on trial i.

rnn_charMapASCII: A 31 character string that defines a mapping between integers and characters (the

ith character of this string is mapped to integer i). This mapping defines which columns of

rnn_charProbTimeSeries map to which characters, and is also used in rnn_decodedCharTimes to

indicate which character was decoded.

Computer Mouse Templates

In the “Datasets” folder, the mouseTemplates.mat file contains computer mouse trajectories that were

created by tracing each character with a mouse in the same way that T5 described writing that

character. These character ‘templates’ were used to train linear decoders to reconstruct T5’s pen tip

trajectories (Fig. 1d), based on the assumption that another person drawing the same character shape

with a computer mouse would naturally follow a similar velocity trajectory as T5. This file can be used to

reproduce Fig. 1d.

References

Christie, B.P., Tat, D.M., Irwin, Z.T., Gilja, V., Nuyujukian, P., Foster, J.D., Ryu, S.I., Shenoy, K.V.,
Thompson, D.E., Chestek, C.A., 2014. Comparison of spike sorting and thresholding of voltage
waveforms for intracortical brain–machine interface performance. J. Neural Eng. 12, 016009.
https://doi.org/10.1088/1741-2560/12/1/016009

Pandarinath, C., Nuyujukian, P., Blabe, C.H., Sorice, B.L., Saab, J., Willett, F.R., Hochberg, L.R., Shenoy,
K.V., Henderson, J.M., 2017. High performance communication by people with paralysis using an
intracortical brain-computer interface. eLife 6, e18554. https://doi.org/10.7554/eLife.18554

Trautmann, E.M., Stavisky, S.D., Lahiri, S., Ames, K.C., Kaufman, M.T., O’Shea, D.J., Vyas, S., Sun, X., Ryu,
S.I., Ganguli, S., Shenoy, K.V., 2019. Accurate Estimation of Neural Population Dynamics without
Spike Sorting. Neuron 103, 292-308.e4. https://doi.org/10.1016/j.neuron.2019.05.003

Willett, F.R., Avansino, D.T., Hochberg, L.R., Henderson, J.M., Shenoy, K.V., 2021. High-performance
brain-to-text communication via handwriting. Nature. In press.

