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Appendix H. Rarefaction and extrapolation of abundance-sensitive phylogenetic 

diversity based on incidence data 

 

Model formulation for incidence data 

 

The model formulation of the rarefaction and extrapolation (R/E) with species diversity (Hill 

numbers) based on incidence data from multiple sampling units was first discussed in Chao et 

al. (2014, Appendix H). A similar framework was subsequently developed for Faith’s PD in 

Chao et al. (2015, Appendix S7). In this appendix, we extend the previous R/E model of Hill 

numbers to include phylogenetic differences among species, and we also generalize the 

previous R/E model of Faith’s PD to incorporate species abundances.  

 

To make the material of this appendix self-contained, we duplicate here the model 

formulation and some derivation steps from Chao et al. (2015, Appendix S7). Suppose in the 

focal assemblage there are S species indexed by 1, 2, …, S. For any sampling unit, assume 

that the ith species has its own unique incidence (or occurrence) probability πi that is constant 

for any randomly selected sampling unit. The incidence probability πi is the probability that 

species i is detected in a sampling unit. We assume that a rooted ultrametric or 

non-ultrametric phylogenetic tree of the S species (as tip nodes) can be constructed. As in the 

main text, we assume that all diversity measures are computed from a fixed reference point 

that is ancestral to all taxa considered in the study.  

 

Assume that there are B branch segments in the tree, B ≥ S, for the given reference point 

on the main trunk. Let Li denote the length of the ith branch. We expand the set of incidence 

probabilities (π1, π2, …, πS) of the S species (as tip nodes) to a larger set of branch incidence 

probabilities }..., ,2 ,1,{ Bii   with (π1, π2, …, πS) as the first S elements. Here we define λi 
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as the probability of detecting at least one species descended from branch i in a sampling unit, 

B  i ...,,2,1 , and refer to λi as the branch/node incidence probability of branch i.  

 
Following the unifying approach of Chao et al. (2014), we develop for the first time the 

phylogenetic diversity measures based on incidence data. Define a phylogenetic entity as a 

branch segment with unit-length. Consider the collection in which there are Li phylogenetic 

entities, B  i ...,,2,1 , and the abundance of each of these Li entities is proportional to branch 

incidence probability λi. The total abundance over all entities in the collection is 

  B

j jjLV
1

 , which is also the mean branch length (weighted by the branch incidence 

probability). Therefore, the relative abundance for each of the Li entities is Vi /  so that 

1)/(
1



B

i ii VL  . The incidence-data-based phylogenetic diversity of order q is the Hill 

number of this collection: 
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This phylogenetic diversity of order q can be interpreted as the effective number of entities, 

or effective total branch length because each entity is of unit-length. As with abundance data, 

the diversity order q determines the measures’ emphasis on rare or common branches.  

 

A reference sample of size T 

For incidence data, “sample size” means “number of sampling units.” We assume that a 

reference sample of size T (all T sampling units are standardized) is randomly selected from 

the study area with replacement. The reference sample includes the incidence data of a set of 

T sampling units. The underlying data consist of a species-by-sampling-unit incidence matrix 

{Wij; i = 1, 2, …, S, j = 1, 2, …, T} with S rows and T columns; here Wij = 1 if species i is 

detected in sampling unit j, and Wij = 0 otherwise, i = 1, 2, …, S, j = 1, 2, …, T. Under our 

assumption that the probability of detecting species i in any sampling unit is a constant πi, i = 

1, 2, …, S, the variable Wij follows a Bernoulli distribution with parameter πi = P(Wij =1). The 

row sum of the incidence matrix 


T

j iji WY
1

, denotes the species incidence frequency of 
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species i, i = 1, 2, …, S.  

 

We expand the incidence matrix {Wij; i = 1, 2, …, S, j = 1, 2, …, T} to a larger TB

matrix }...,,2,1,...,,2,1,{ TjBiWij    by redefining that Wij = 1 if at least one species 

descended from branch i is detected in jth sampling unit, and Wij = 0 otherwise. This also 

expands the set of the observed species incidence frequencies }...,,,{ 21 SY  Y Y  to a larger set

},...,2,1,{ * Bi Yi  , which consists of the row sums of the expanded incidence matrix. We 

refer to *
iY  as the sample branch/node incidence frequency for branch i, i = 1, 2, …, B. 

Suppose that the incidence data for all the sampling units are independent. Then *
iY , i = 1, 

2, …, B, follows a binomial distribution: 

ii yT
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ii y

T
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






 )1()( *  ,  yi = 0, 1, 2,…, T,  

where i  is the branch incidence probability. See Figure S7.1 of Chao et al. (2015) for an 

example. Define Rk as the sum of branch lengths for those branches with incidence frequency 

k (or incidence probability k/T) i.e., 

  B

i iik kYILR
1

* )( , k = 0, 1, …, T,  (H.3) 

where I (·) is an indicator function that equals 1 when true and 0 otherwise. Thus, R0 

represents the total length of branches that are not detected in the observed tree (i.e., the tree 

spanned by the observed species in the reference sample); R0 is unknown but ...},,{ 21 RR  

can be computed from the reference sample and the observed tree. Here R1 denotes the total 

branch length of those uniques, and R2 denotes the total branch length of those duplicates in 

the branch incidence frequency set },...,2,1,{ * Bi Yi  . Equivalently, R1 denotes the total 

branch length of those uniques in the branch incidence frequency set of the observed tree. A 

similar equivalence is valid for R2. The observed phylogenetic diversity in the reference 

sample can be expressed as  
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where  B

i iiobs TYLV
1

* )/(  is the observed mean branch length in the reference sample. 

Notice that when there are no internal nodes in the phylogenetic tree and all branches are 

equally distinct with branch lengths of unity (i.e., branch lengths are normalized to unity), 

 B

i iobs TYV
1

* / , the average number of incidences per assemblage. 

 

qPD accumulation curve 

Although the model formulation and data structure for incidence data are different from those 

for abundance data, all derivations are generally parallel to those in the main text and thus 

most details are omitted. To derive the theoretical formula for the expected phylogenetic 

diversity as a function of sample size t = 1, 2, …, we assume a hypothetical sample of t 

sampling units is taken from the entire assemblage with species incidence probabilities (π1, 

π2, …, πS) and branch incidence probabilities },...,2,1,{ Bii  . As we defined 

},...,2,1,{ * Bi Yi   and {Rk, k = 0, 1, …, T } for the reference sample of size T, we can 

similarly define },...,2,1),({ * Bi tYi   and {Rk(t), k = 0, 1, …, T } for a hypothetical sample 

of t sampling units. That is, Yi(t) denotes the sample incidence frequency of branch i, i = 1, 

2, …, B, in a hypothetical sample of size t; Rk(t) denotes the sum of branch lengths for those 

branches with incidence frequency k (or incidence probability k/t) in a hypothetical sample of 

size t, i.e., 

  B

i iik ktYILtR
1

* ))(()( , k = 0, 1, …, t. (H.5)  

Since ,,...,2,1),(* Bi tYi   follows a binomial distribution with sample size t and probability 

λi, we obtain the analytic formulation of E[Rk(t)]: 
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   Define qPD(t) for any positive integer t as the phylogenetic diversity based on the 

expected distribution of sample branch incidence frequency distribution in a hypothetical 

sample of size t. For any positive integer t, it follows from Equation (H.6) that the expected 

mean branch length is  

t

k k tREtk
1

)]([)/(  

B

i iiL
1

 , which is V defined earlier in the 

model formulation. Using a similar derivation as that for abundance data, we obtain the 

following formula for qPD(t): 
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We thus obtain the theoretical formulas that are needed to depict the accumulated diversity 

qPD(t) as a function of the sampling units t. All formulas for q = 0, q = 1, q = 2 and q > 2 are 

shown in the first column of Table H.1.  

 

qPD rarefaction (for incidence data) 
 
Given a reference sample of T sampling units with branch incidence frequency set 

{ BiYi ...,,2,1,  }, the rarefaction problem is to estimate qPD(t), the expected PD in a 

hypothetical sample of t sampling units (t < T ) from the assemblage. In this case, an unbiased 

estimator of )]([ tRE k  exists for t < T: 
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Substituting )(ˆ tRk  and  B

i iiobs TYLV
1

* )/(  into Equations (H.7) and (H.8), we then 

obtain the rarefaction estimator of qPD based on incidence data. All formulas for q=0, q=1, 

q= 2 and q > 2 are shown in the second column of Table H.1. 

  
qPD extrapolation (for incidence data) 

 

The extrapolation problem is to predict qPD(T + t*), the expected PD in a hypothetical sample 

of T + t* sampling units (t* > 0) from the assemblage. As with the abundance data (Appendix 

B), we can apply parallel derivations to obtain the extrapolation formulas for incidence data. 

Here we only summarize the formulas without giving details. The general extrapolation 

estimator for the phylogenetic diversity of order q is based on the following formula:  
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෢௤ܦܲ ሺܶ൅ݐ∗ሻ [ obs
qPD ෢௤ܦܲ ሺ∞ሻ ])ˆ1(1][ *tq

obs
qPD  ,  q ≥ 0.  (H.10) 

Here the estimator ̂q

 
is in terms of the estimated asymptote ܲܦ෢௤ ሺ∞ሻ	(to be specified 

below for some special cases) and a diversity estimator ܲܦ෢௤ ሺT	–1ሻ	for rarefied sample of 

size T –1 (in Table H.1):  

 obs
qq PD[̂ ෢௤ܦܲ ሺܶ	–1ሻሿ / [ ෢௤ܦܲ ሺ∞ሻ – ෢௤ܦܲ ሺܶ	–1ሻሿ,  q ≥ 0.

 

(H.11) 

See Equation (B.6) of Appendix B for analogous derivations. For the special case that q is an 

integer ≥ 2, an exact extrapolation formula is available and given in later text. All formulas 

for q = 0, q = 1, q = 2 and q > 2 are shown in the third column of Table H.1. Three special 

cases are discussed below.  

 

(a) For q = 0, the extrapolation formula is (see Equation B.4 in Appendix B for parallel 

derivations) 
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  where ܲܦ෢଴ ሺ∞ሻ *
0

0 R̂PDobs  , and 
*
0R̂  is the Chao2-PD estimator for the undetected 

0PD in the reference sample R0, i.e.:  
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  Here Q1 denotes the number of uniques (i.e., the number of species that occur exactly in 

one sampling unit) in the observed species incidence frequency set {Yi, S  i ...,,2,1 }; it is 

the same as the number of uniques in the sample incidence frequency set of the observed 

tree because uniques can only occur in the tip nodes. However, *
2Q

 
(the number of 
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duplicates in the sample incidence frequency set of the observed tree) is generally different 

from the number of duplicates in the observed species incidence frequency set {Yi, 

S  i ...,,2,1 }.  

(b) For q = 1, the extrapolation formula is (see Equation B.7 in Appendix B for parallel 

derivations) 
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(c) For an integer q ≥ 2, the extrapolation formula is (see Appendix B for parallel derivations) 
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where )1)...(1()(  jxxxx j  denotes the falling factorial, and ),( jq denotes the 

Stirling number of the second kind defined by the coefficient in the expansion 

)(
1 ),( jq

j
q xjqx    . When t* tends to infinity, we obtain the following nearly unbiased 

estimator for the asymptotic diversity of order q < T: 
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In the special case of q = 2, Equation (H.14) reduces to  

												 ෢ଶܦܲ ሺܶ+t*ሻ
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The unconditional variance estimator for the rarefaction estimator ܲܦ෢௤ ሺݐሻ and for the 

extrapolation estimator ܲܦ෢௤ ሺܶ+t*ሻ with the associated confidence interval can be 

computed by a bootstrap method. See Appendix S7 in Chao et al. (2015) for details. 
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TABLE H.1: (Incidence data) The theoretical formulas and analytic estimators for rarefaction and extrapolation of phylogenetic diversity of 

order q = 0 (first row of equations), q =1 (second row), q = 2 (third row) and any integer order q> 2 (fourth row), given a reference sample1 of T 

sampling units.  

Theoretical Formula 2 (for all t > 0) Interpolation Estimator 3 (for t < T) 
Extrapolation Estimator 4 
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(nearly unbiased)
5Expected coverage of sample size t: 
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
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QQT

QT

U

Q  

(reliable for t* < T) 

 
NOTES 
1 For the reference sample, the observed phylogenetic diversity of order q is obs

qPD (Equation H.4) and the total number of incidence is 

 S

i iYU
1

. See Chao et al. (2014, Table 2) for the sample coverage estimator of the reference sample.  

2 The term Rk(t) is defined in Equation (H.5)  
3 An unbiased estimator )(ˆ tRk  for E[Rk(t)] is given in Equation (H.9) for t < T.  
4 For q = 0 and 1, the formulas for ܲܦ෢଴ ሺ∞ሻ, ܲܦ෢ଵ ሺ∞ሻ, ̂0  and ̂1  are given in the text of this Appendix. For any integer q ≥ 2, 

)1)....(1()(  jxxxx j  denotes the falling factorial, and ),( jq = the Stirling number of the second kind defined by the coefficient in the 

expansion )(
1 ),( jq

j
q xjqx    .  

5 The last row gives equations for sample completeness as a function of sample size, and the corresponding coverage estimators for rarefied 

samples and extrapolated samples.   
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