
Online Appendix1

A unifying comparative phylogenetic framework including2

traits coevolving across interacting lineages3

Marc Manceau1,3,4, Amaury Lambert2,3, Hélène Morlon4
4

1Muséum National d’Histoire Naturelle, 75005 Paris, France;5

2Laboratoire Probabilités et Modèles Aléatoires, UPMC Univ Paris 06, 75005 Paris, France;6

3Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, 75005 Paris,7

France;8

4Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, 75005 Paris, France9

Content.— We provide here the full, uncut, Online Appendix to our paper entitled "A unifying10

comparative phylogenetic framework including traits coevolving across interacting lineages". The11

first section is exposed in the attached appendix of the paper, but we let it here for the sake of12

self-containment. Note that simple equation numbering (e.g. equation (5)) refers to equations13

printed in the main text, whereas equations exposed in this appendix are designated as, e.g.14

equation (S5).15

Contents16

A Derivation of the distribution in a general setting 217

B Distribution for some models without interactions between lineages 618

C Distribution for some models with interactions between lineages 1819

D Simulation and Inference 3020

E Tutorial : using the RPANDA code to study trait coevolution 3521

1

A Derivation of the distribution in a general setting22

A.1 The distribution of trait values is Gaussian23

Recall that a vector is Gaussian if all linear combination of its components follows a normal24

distribution. We will thus show by induction that all linear combinations of the traits follow a25

normal distribution.26

The process of trait evolution starts either at the stem root with a vector of size d defined27

by the initial conditions Xτ0 = tr(X1
0 , ...X

d
0), or at the crown root with a vector of size 2d defined28

by the initial conditions : Xτ0 = tr(X1
0 , ...X

d
0 , X

1
0 ..., X

d
0), or at any other step, provided the initial29

conditions are Gaussian by assumption.30

Now, assume that Xτi is a Gaussian vector.31

Then, ∀t ∈ (τi, τi+1), after integration we have the following closed expression for the value32

of the process Xt.33

Xt = e−tAi
(
eτiAiXτi +

∫ t

τi

esAiai(s)ds+

∫ t

τi

esAiΓi(s)dWs

)
(S1)

Moreover, we have, for any deterministic function Φ (Gardiner et al. 1985),34

∫ t

tn

ΦsdWs ∼ N
(

0,

∫ t

tn

Φs
trΦsds

)
Hence, Xt is a linear combination of Gaussian vectors, which makes it a Gaussian vector.35

Last, suppose that at time τi+1, the jth branch splits, in which case the vector grows. All36

linear combinations of the components of Xt at time τ−i+1 have a normal distribution. And the d37

additional components added at time τi+1 belong to the components at time τ−i+1. It follows that38

all linear combinations of the new vector still have a normal distribution.39

A.2 Integrating the evolution of the distribution through each epoch40

Still assuming that we know the (Gaussian) distribution of Xτi at the beginning of an epoch41

(τi, τi+1), a few more lines allow us to provide a closed formula for the distribution of Xt at all42

2

time t ∈ (τi, τi+1). Indeed, using Equation (S1), and the fact that, if X and Y are two43

independent Gaussian vectors with expectation vectors respectively mX and mY and covariance44

matrices respectively ΣX and ΣY , then :45

DX + d ∼ N
(
DmX + d , DΣX

trD
)

X + Y ∼ N (mX +mY , ΣX + ΣY)

It thus follows that, ∀t ∈ [τi, τi+1],46

mt = e(τi−t)Aimτi +

∫ t

τi

e(s−t)Aiai(s)ds (4a)

Σt =
(
e(τi−t)Ai

)
Στi

tr
(
e(τi−t)Ai

)
+

∫ t

τi

(
e(s−t)AiΓi(s)

)
tr
(
e(s−t)AiΓi(s)

)
ds (4b)

Applying these equations for t = τi+1 thus gives the distribution of the trait vector at time47

τi+1 , which is the result stated in Equations (4a, 4b) in the main text.48

Remark that, unless one of the very first branches immediately dies at the beginning of49

the process at a fixed initial condition, the density of the tip distribution has support in Rnd.50

One can check that Σt stays positive definite (implying that det Σt 6= 0), even when some Γi are51

not positive definite (except the first one).52

A.3 Evolution of the distribution through ODE resolution53

The expectation and covariance formulae provided in Equations (4a, 4b) require to deal with an54

integral which is not always straightforward to compute. Alternatively, one can prefer to take the55

derivative of this expression, get a set of ODEs verified by the expectation and covariance56

elements through each epoch, and subsequently integrate the ODE system. We show now57

another way to derive this set of ODEs.58

First, we write the stochastic differential equation on any epoch (τi, τi+1) and for each59

trait k, which is given in the most general setting by :60

3

dX
(k)
t =

(
a

(k)
i (t)−

ntd∑
m=1

A
(k,m)
i X

(m)
t

)
dt+

ntd∑
m=1

Γ
(k,m)
i (t)dW

(m)
t

Itô’s formula (Gardiner et al. 1985) then gives us :61

d
(
X

(k)
t X

(l)
t

)
= X

(k)
t dX

(l)
t +X

(l)
t dX

(k)
t + d < X

(k)
t , X

(l)
t >

=

(
a

(l)
i (t)X

(k)
t −

ntd∑
m=1

A
(l,m)
i X

(m)
t X

(k)
t

)
dt+

ntd∑
m=1

Γ
(l,m)
i (t)X

(k)
t dW

(m)
t

+

(
a

(k)
i (t)X

(l)
t −

ntd∑
m=1

A
(k,m)
i X

(m)
t X

(l)
t

)
dt+

ntd∑
m=1

Γ
(k,m)
i (t)X

(l)
t dW

(m)
t

+
ntd∑
m=1

Γ
(l,m)
i (t)Γ

(k,m)
i (t)dt

Taking the expectation, it follows that62

d

dt
E
(
X

(k)
t X

(l)
t

)
= a(l)(t)E

(
X

(k)
t

)
+ a

(k)
i (t)E

(
X

(l)
t

)
−

ntd∑
m=1

A
(l,m)
i E

(
X

(m)
t X

(k)
t

)
−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t X

(l)
t

)
+

ntd∑
m=1

Γ
(l,m)
i (t)Γ

(k,m)
i (t)

In the same fashion, we get63

d

dt
E(X

(k)
t) = a

(k)
i (t)−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t

)
(5a)

This leads to64

d

dt

(
E(X

(k)
t)E(X

(l)
t)
)

= E(X
(l)
t)

d

dt
E(X

(k)
t) + E(X

(k)
t)

d

dt
E(X

(l)
t)

= a
(k)
i (t)E

(
X

(l)
t

)
−

ntd∑
m=1

A
(k,m)
i E

(
X

(m)
t

)
E
(
X

(l)
t

)
+ a

(l)
i (t)E

(
X

(k)
t

)
−

ntd∑
m=1

A
(l,m)
i E

(
X

(m)
t

)
E
(
X

(k)
t

)
Putting together these different parts gives us the ODE satisfied by all covariances :65

4

d

dt
Cov

(
X

(k)
t , X

(l)
t

)
=

d

dt

(
E
(
X

(k)
t X

(l)
t

)
− E(X

(k)
t)E(X

(l)
t)
)

= −
ntd∑
m=1

[
A

(k,m)
i Cov

(
X

(m)
t , X

(l)
t

)
+ A

(l,m)
i Cov

(
X

(m)
t , X

(k)
t

)
− Γ

(l,m)
i (t)Γ

(k,m)
i (t)

]
(5b)

Note that in a vectorial formalism with the expectation vector m and covariance matrix66

Σ, these sets of ODEs can be written equivalently as follows67

dmt

dt
= ai(t)− Aimt (S2)

dΣt

dt
= −AiΣt − trΣt

trAi + Γi
trΓi (S3)

5

B Distribution for some models without interactions68

between lineages69

B.1 Distribution of classic univariate models70

We present in this section how previously known results of analytic tip distribution of univariate71

models fit in, and can be rediscovered with, our framework. Results are summarized in Table S1.72

The scheme is identical for each model :73

1. Reduce Equations (4a, 4b) or (5a, 5b) according to the model.74

2. Look for an analytical solution at any time τi, by calculating manually the expectations75

and covariances at τ1, τ2, τ3,76

3. Prove by induction that the analytical solution holds at any time τi.77

We call tk,l the time of the most recent common ancestor to lineages k and l, and tk,k the78

death time of lineage k, equal to T if it survives until present (see Fig. S1). We further note79

1k alive(t) the quantity that equals one if lineage k is alive at time t and zero otherwise, and 1k=l80

that equals one if k = l and zero otherwise. Last, t1 ∧ t2 stands for the minimum of the two81

values t1 and t2.82

The unity vector (vector full of 1) is denoted by V , I refers to the identity matrix83

(diagonal matrix with diagonal values equal to 1), and U refers to the unity matrix (matrix full84

of 1). Their size is the same as the size of the vector of traits Xt considered. Considering85

non-ultrametric trees including fossils amounts to replacing vector V and matrices I and U by86

their homologs Valive, Ialive and Ualive, where the subscript specifies that the vector and matrices87

have 0 on lines and columns corresponding to lineages that are extinct in the given epoch.88

B.1.1 Brownian Motion (BM)89

We show how to get the well-known expression of the distribution of a trait evolving under BM,90

on non-necessarily ultrametric trees. We take a = bValive, A = 0 and Γ = σIalive, i.e. the process91

6

Code m0 Σ0 (mT)(k) (ΣT)(k,l)

BM m0 v0 m0 + btk,k v0 + σ2tk,l

OU θ 0 θ σ2

2ψ
e−ψ(tk,k+tl,l−2tk,l)

(
1− e−2ψtk,l

)
OU θ σ2

2ψ
θ σ2

2ψ
e−ψ(tk,k+tl,l−2tk,l)

ACDC m0 v0 m0 v0 +
σ2
0

2r
(e2rtk,l − 1)

DD m0 v0 m0 v0 + σ2
0

∑N−1
j=0 e2rnτj (τj+1 − τj)1tk,l>τj

Table S1: Analytic tip distribution for models without interactions between traits or lineages.

We recall that tk,l is the absolute time of the most recent common ancestor to lineages k and l,

and tk,k is the death time of lineage k, equal to T if it survives until present.

Figure S1: Formalism used in analytic formulae presented in Table S1.

follows the equation :92

dXt = bValivedt+ σIalivedWt

Equations (4a) and (4b) lead to the following recurrence formulae driving the law of Xt93

through each epoch [τi, τi+1):94

E(Xt) = E(Xτi) + b(t− τi)Valive

Var(Xt) = Var(Xτi) + σ2(t− τi)Ialive

Alternatively, Equations (5a) and (5b) lead to the following recurrence formulae driving95

the law of Xt through each epoch [τi, τi+1):96

7

d

dt
E(X

(k)
t) = b1k alive(t)

d

dt
Cov(X

(k)
t , X

(l)
t) = σ21k=l1k alive(t)

We can show by induction on i that for any i the expectation and covariance matrix at97

time τi are such that, for any (k, l) :98

E(X(k)
τi

) = E(X0) + b(tk,k ∧ τi) (S4)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) + σ2(tk,l ∧ τi) (S5)

Indeed, we verify Equations (S4, S5) at step i = 1.99

Now, suppose Equations (S4, S5) hold at step n. Using either Equations (4a, 4b) or (5a,100

5b), we get :101

E(X
(k)

τ−n+1

) = E(X0) + b(tk,k ∧ τn+1)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) + σ2(tk,l ∧ τn+1)

If τn+1 is a death time of a lineage, Equations (S4, S5) are verified at step n+ 1.102

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and103

covariances of its mother, as well as the same coalescence times with other lineages. It also104

follows that Equations (S4, S5) are verified at step n+ 1.105

Finally, by induction, we get the tip distribution :106

E(X
(k)
T) = E(X0) + btk,k

Cov(X
(k)
T , X

(l)
T) = Var(X0) + σ2tk,l

B.1.2 Ornstein-Uhlenbeck (OU)107

We can get another well-known distribution for a trait evolving under an Ornstein-Uhlenbeck108

process on a tree. We take a = ψθValive, A = ψIalive and Γ = σIalive, i.e. the process follows the109

equation :110

8

dXt = (ψθValive − ψIaliveXt)dt+ σIalivedWt

Expressions (4a) and (4b) simplify into the following recurrence formulae :111

E(Xt) = e−ψ(t−τi)Ialive (E(Xτi)− θValive) + θValive

Var(Xt) = e−2ψ(t−τi)Ialive
(
Var(Xτi)−

σ2

2ψ
Ialive

)
+
σ2

2ψ
Ialive

Alternatively, here again, one can prefer to apply Equations (5a) and (5b) :112

d

dt
E(X

(k)
t) = ψ1kalive(t)

(
θ − E

(
X

(k)
t

))
d

dt
Cov

(
X

(k)
t , X

(l)
t

)
= −ψ(1k alive(t) + 1l alive(t))Cov

(
X

(k)
t , X

(l)
t

)
+ σ21k=l

We can show by induction that for any epoch i, the expectation and covariance matrix at113

time τi are such that, for all (k, l) :114

E(X(k)
τi

) = θ + e−ψ(tk,k∧τi) (E(X0)− θ) (S6)

Cov(X(k)
τi
, X(l)

τi
) = e−ψ(tk,k∧τi+tl,l∧τi−2(tk,l∧τi))

[
σ2

2ψ
+ e−2ψ(tk,l∧τi)

(
Var(X0)− σ2

2ψ

)]
(S7)

Indeed, we verify Equations (S6, S7) at step i = 0.115

Now, suppose Equations (S6, S7) hold at step n. Using either Equations (4a, 4b) or (5a,116

5b), we get :117

E(X
(k)

τ−n+1

) = θ + e−ψ(tk,k∧τn+1) (E(X0)− θ)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = e−ψ(tk,k∧τn+1+tl,l∧τn+1−2(tk,l∧τn+1))

[
σ2

2ψ
+ e−2ψ(tk,l∧τn+1)

(
Var(X0)− σ2

2ψ

)]
If τn+1 is a death time of a lineage, Equations (S6, S7) are verified at step n+ 1.118

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and119

covariances of its mother, as well as the same coalescence times with other lineages. It also120

follows that Equations (S6, S7) are verified at step n+ 1.121

Finally, by induction, we get the tip distribution :122

9

E(X
(k)
T) = θ + e−ψtk,k (E(X0)− θ)

Cov(X
(k)
T , X

(l)
T) = e−ψ(tk,k+tl,l−2tk,l)

[
σ2

2ψ
+ e−2ψtk,l

(
Var(X0)− σ2

2ψ

)]
Two classes of initial distributions are typically considered in the literature :123

1. If we consider a process starting at X0 = θ (i.e. with E(X0) = θ and Var(X0) = 0), we get124

the following expectation vector mT and covariance matrix ΣT at the tips :125

mT = tr(θ, θ, ..., θ) and ΣT =
σ2

2ψ
Υ1

where Υ1 =
[
e−ψ(tk,k+tl,l−2tk,l)

(
1− e−2ψtk,l

)]
1≤k,l≤K

2. When ψ > 0, if we consider a process starting under its stationary distribution (i.e.126

E(X0) = θ and Var(X0) = σ2

2ψ
), it simplifies into the following expectation vector and127

covariance matrix :128

mT = tr(θ, θ, ..., θ) and ΣT =
σ2

2ψ
Υ2

where Υ2 =
[
e−ψ(tk,k+tl,l−2tk,l)

]
1≤k,l≤K

B.1.3 ACDC (accelerating or decelerating rate)129

In the ACDC process, the rate of phenotypic evolution varies exponentially through time, with130

a = 0, A = 0 and Γ = σ0e
rtIalive (here, r > 0). The process follows the equation :131

dXt = σ0e
rtIalivedWt

Here again, we can simplify Equations (4a, 4b) or (5a, 5b). With Equations (4a, 4b), we132

get the following recurrence formulae driving the law of Xt through each epoch (τi, τi+1):133

10

E(Xt) = E(Xτi)

Var(Xt) = Var(Xτi) +
σ2

0

2r

(
e2rt − e2rτi

)
Ialivedt

We can show by induction that for any i, the expectation and covariance matrix at time τi134

are such that, for any (k, l) :135

E(X(k)
τi

) = E(X0) (S8)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) +

σ2
0

2r

(
e2r(tk,l∧τi) − 1

)
(S9)

Indeed, we verify Equations (S8, S9) at step i = 0.136

Now, suppose Equations (S8, S9) hold at step n. Using either Equations (4a, 4b) or (5a,137

5b), we get :138

E(X
(k)

τ−n+1

) = E(X0)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) +
σ2

0

2r

(
e2r(tk,l∧τn+1) − 1

)
If τn+1 is a death time of a lineage, Equations (S8, S9) are verified at step n+ 1.139

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and140

covariances of its mother, as well as the same coalescence times with other lineages. It also141

follows that Equations (S8, S9) are verified at step n+ 1.142

Finally, by induction, we get the tip distribution :143

E(X
(k)
T) = E(X0)

Cov(X
(k)
T , X

(l)
T) = Var(X0) +

σ2
0

2r

(
e2rtk,k − 1

)
B.1.4 ACDC and OU processes lead to the same present-time distributions on ultrametric trees144

This has been shown previously in Uyeda et al. 2015. More precisely, OU is equivalent to a145

model with accelerating rates at present, and only on ultrametric phylogenies.146

11

Looking at expressions of expectations and covariance matrices under ACDC and OU147

with initial conditions X0 = θ, we see that we can choose parameters such that we get the exact148

same distribution. First take E(X0) = θ : the two expectation vectors are identical. Moreover,149

we can choose parameters such that the covariance matrices are equal :150

σ2

2ψ
e−2ψ(T−tk,l)

(
1− e−2ψtk,l

)
=

σ2
0

2r

(
e2rtk,l − 1

)
⇐⇒ σ2

2ψ
e−2ψT

(
e2ψtk,l − 1

)
=

σ2
0

2r

(
e2rtk,l − 1

)
⇐⇒ r = ψ and σ2

0 = σ2e−2ψT

Note that this no longer holds on non-ultrametric trees, neither with different initial151

conditions on the OU.152

B.1.5 Diversity-Dependent (DD)153

In the DD process, the rate of phenotypic evolution is fixed at the base of the tree and varies154

exponentially with the number of lineages in the reconstructed phylogeny, with a = 0, A = 0 and155

B(t) = σ0e
rntIalive. The process follows the equation :156

dXt = σ0e
rntIalivedWt

Equations (4a, 4b) lead to the following recurrence formulae driving the law of Xt through157

each epoch (τi, τi+1):158

E(Xt) = E(Xτi)

Var(Xt) = Var(Xτi) + σ2
0e

2rnτi (t− τi)Ialive

Note that, alternatively, one can again prefer to apply Equations (5a, 5b).159

We can then show by induction that for any i, the expectation and covariance matrix at160

time τi are such that, for any (k, l) :161

12

E(X(k)
τi

) = E(X0) (S10)

Cov(X(k)
τi
, X(l)

τi
) = Var(X0) + σ2

0

i−1∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj (S11)

Indeed, we verify Equations (S10, S11) at step i = 0.162

Now, suppose Equations (S10, S11) hold at step n. Using either Equations (4a, 4b) or (5a,163

5b), we get :164

E(X
(k)

τ−n+1

) = E(X0)

Cov(X
(k)

τ−n+1

, X
(l)

τ−n+1

) = Var(X0) + σ2
0

n∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj

If τn+1 is a death time of a lineage, Equations (S10, S11) are verified at step n+ 1.165

If τn+1 is a branching time, we verify that the new lineage inherits the expectation and166

covariances of its mother, as well as the same coalescence times with other lineages. It also167

follows that Equations (S10, S11) are verified at step n+ 1.168

Finally, by induction, we get the tip distribution at present time τN = T :169

E(X
(k)
T) = E(X0)

Cov(X
(k)
T , X

(l)
T) = Var(X0) + σ2

0

N−1∑
j=0

e2rnτj (τj+1 − τj)1tk,l>τj

B.2 Distribution of classic multivariate models170

The same methodology applies to classic multivariate models that incorporate interactions171

between traits within lineages but not between lineages. In our formalism, for all i, Ai and Γi are172

block diagonal, with d× d blocks on the diagonal corresponding to the traits within each lineage.173

We call these blocks respectively A∗ and Γ∗. Moreover, the vector ai is the repetition of identical174

sequences a∗ of d elements.175

Writing the matrix products in Equations (4a, 4b) provides us with d× d blocks that176

behave identically during each epoch. Indeed, we can use :177

13

m∗(k)
τi

=



E(X
(k,1)
τi)

E(X
(k,2)
τi)

...

E(X
(k,d)
τi)


and Σ∗(k,l)τi

=



Cov(X
(k,1)
τi , X

(l,1)
τi) Cov(X

(k,1)
τi , X

(l,2)
τi) . . . Cov(X

(k,1)
τi , X

(l,d)
τi)

Cov(X
(k,2)
τi , X

(l,1)
τi) Cov(X

(k,2)
τi , X

(l,2)
τi) . . . Cov(X

(k,2)
τi , X

(l,d)
τi)

...
...

Cov(X
(k,d)
τi , X

(l,1)
τi) Cov(X

(k,d)
τi , X

(l,2)
τi) . . . Cov(X

(k,d)
τi , X

(l,d)
τi)


In which case Equations (4a, 4b) lead to the recurrence formulae :178

m∗(k)
τi+1

= e(τi−τi+1)1k alive(τi+1)A∗
m∗(k)
τi

+ 1k alive(τi+1)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

Σ∗(k,l)τi+1
= e(τi−τi+1)1k alive(τi+1)A∗

Σ∗(k,l)τi
tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

We can then prove by induction that for any epoch i and any pair of lineages (k, l)179

m∗(k)
τi

= e−τi∧tk,kA
∗
m∗0 +

∫ τi∧tk,k

0

e(s−τi∧tk,k)A∗
a∗(s)ds (S12)

Σ∗(k,l)τi
= e−τi∧tk,kA

∗
Σ∗0

tr
(
e−τi∧tl,lA

∗)
+

∫ tk,l∧τi

0

(
e−τi∧tk,kA

∗
Γ∗
)
tr
(
e−τi∧tl,lA

∗
Γ∗
)
ds (S13)

Indeed, we verify Equations (S12, S13) at step i = 0.180

Now, suppose Equations (S12, S13) hold at step i. Using Equations (4a, 4b), we get :181

m
∗(k)

τ−i+1

= e(τi−τi+1)1k alive(τi)A
∗
m∗(k)
τi

+ 1k alive(τi)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

= e(τi−τi+1)1k alive(τi)A
∗
e−τi∧tk,kA

∗
m∗0 +

∫ τi∧tk,k

0

e(τi−τi+1)1k alive(τi)A
∗
e(s−τi∧tk,k)A∗

a∗(s)ds

+ 1k alive(τi)

∫ τi+1

τi

e(s−τi+1)A∗
a∗(s)ds

= e−τi+1∧tk,kA∗
m∗0 +

∫ τi+1∧tk,k

0

e(s−τi+1∧tk,k)A∗
a∗(s)ds

as well as :182

14

Σ
∗(k,l)
τ−i+1

= e(τi−τi+1)1k alive(τi+1)A∗
Σ∗(k,l)τi

tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

= e(τi−τi+1)1k alive(τi+1)A∗
e−τi∧tk,kA

∗
Σ∗0

tr
(
e−τi∧tl,lA

∗) tr(e(τi−τi+1)1l alive(τi+1)A∗)
+

∫ tk,l∧τi

0

e(τi−τi+1)1k alive(τi+1)A∗ (
e−τi∧tk,kA

∗
Γ∗
)
tr
(
e−τi∧tl,lA

∗
Γ∗
)
tr
(
e(τi−τi+1)1l alive(τi+1)A∗)

ds

+ 1k=l

∫ τi+1

τi

(
e(s−τi+1)A∗

Γ∗
)
tr
(
e(s−τi+1)A∗

Γ∗
)
ds

= e−τi+1∧tk,kA∗
Σ∗0

tr
(
e−τi+1∧tl,lA∗)

+

∫ tk,l∧τi+1

0

(
e−τi+1∧tk,kA∗

Γ∗
)
tr
(
e−τi+1∧tl,lA∗

Γ∗
)
ds

If τi+1 is a death time of a lineage, Equations (S12, S13) are verified at step i+ 1.183

If τi+1 is a branching time, we verify that the new lineage inherits the expectation and184

covariances of its mother, as well as the same coalescence times with other lineages. It also185

follows that Equations (S12, S13) are verified at step i+ 1.186

Finally, by induction, we get the tip distribution :187

m
∗(k)
T = e−tk,kA

∗
m∗0 +

∫ tk,k

0

e(s−tk,k)A∗
a∗(s)ds

Σ
∗(k,l)
T = e−tk,kA

∗
Σ∗0

tr
(
e−tl,lA

∗)
+

∫ tk,l

0

(
e−tk,kA

∗
Γ∗
)
tr
(
e−tl,lA

∗
Γ∗
)
ds

B.2.1 OU-BM model188

As a first illustration, consider a model with d = 3 traits with equation during each epoch and on189

each lineage k as follows :190

dX
(k,1)
t = ψ

(
b1 + b2X

(k,2)
t + b3X

(k,3)
t −X(k,1)

t

)
dt+ σ1dW

(k,1)
t

dX
(k,2)
t = σ2dW

(k,2)
t

dX
(k,3)
t = σ3dW

(k,3)
t

These equations describe the evolution of two independent traits evolving following a BM191

(traits 2 and 3), and one trait following an OU with optimal trait value given by a linear192

15

combination of traits 2 and 3. Its main interest is to infer the dependence of one trait to two193

other independent traits on a phylogeny. Knowing the distribution at the beginning of a given194

epoch, we use Equations (4a, 4b) to compute the distribution at the end of the epoch.195

A is block-diagonal with the following blocks A∗ :196

A∗ =


1 −b2 −b3

0 0 0

0 0 0


Writing ∆ = s− τi+1, it follows that e∆Ai is block diagonal with 3× 3 elements given by :197

e∆A∗
=


e∆ −b2

(
e∆ − 1

)
−b3

(
e∆ − 1

)
0 1 0

0 0 1


Moreover, Γi is block-diagonal with diagonal blocks :198

Γ∗ =


σ1 0 0

0 σ2 0

0 0 σ3


The matrix product (e∆AiΓi)

tr(e∆AiΓi) is thus block-diagonal with 3× 3 blocks :199


(σ2

1 + b2
2σ

2
2 + b2

3σ
2
3)e2∆ − 2(b2

2σ
2
2 + b2

3σ
2
3)e∆ + (b2

2σ
2
2 + b2

3σ
2
3) −b2σ

2
2(e∆ − 1) −b3σ

2
3(e∆ − 1)

−b2σ
2
2(e∆ − 1) σ2

2 0

−b3σ
2
3(e∆ − 1) 0 σ2

3


These matrices can be used to compute m∗(k)

T and Σ
∗(k,l)
T , with the help of Equations (S12,200

S13).201

B.2.2 OU-OU model202

Consider now a model with d = 2 traits with equation during each epoch and on each lineage k203

given by :204

16

dX
(k,1)
t = ψ

(
b1 + b2X

(k,2)
t −X(k,1)

t

)
dt+ σ1dW

(k,1)
t

dX
(k,2)
t = ψ

(
b3 −X(k,2)

t

)
dt+ σ2dW

(k,2)
t

These equations describe the evolution of one trait evolving following an OU (trait 2), and205

one trait following an OU with optimal trait value given by an affine transformation of trait 2.206

Its main interest is to infer the dependence of one trait to another trait on a phylogeny. Knowing207

the distribution at the beginning of a given epoch, we use Equations (4a, 4b) to compute the208

distribution at the end of the epoch.209

Ai is block diagonal, with the following 2× 2 blocks A∗ :210

A∗ =

1 −b2

0 1


Again, writing ∆ = s− τi+1, it follows that e∆Ai is block diagonal with 2× 2 elements211

given by :212

e∆A∗
=

e∆ −b2∆e∆

0 e∆


Moreover, Γi is diagonal with repeated values :213

Γ∗ =

σ1 0

0 σ2


The matrix product (e∆AiΓi)

tr(e∆AiΓi) is thus block-diagonal with 2*2 blocks :214

σ2
1e

2∆ + b2
2∆2σ2e2∆ −b2σ

2
2∆e2∆

−b2σ
2
2∆e2∆ σ2

2e
2∆


These matrices can be used to compute m∗(k)

T and Σ
∗(k,l)
T , with the help of Equations (S12,215

S13).216

17

C Distribution for some models with interactions217

between lineages218

C.1 Distribution with a constant, A symmetric, and Γ = σI219

When Γ = σI and A is symmetric, Equations (4a, 4b) become :220

E(Xt) = e(τi−t)AiE(Xτi) +

∫ t

τi

e(s−t)Aiai(s)ds

Var(Xt) =
(
e(τi−t)Ai

)
Var(Xτi)

tr
(
e(τi−t)Ai

)
+ σ2

∫ t

τi

e2(s−t)Aids

If Ai is symmetric with coefficients in R, it can be diagonalized by orthogonal passage221

matrices : we can exhibit a matrix Q verifying trQAiQ = Λi is diagonal and Q−1 = trQ.222

E(Xt) = Qe(τi−t)Λi trQE(Xτi) +Q

(∫ t

τi

e(s−t)Λids

)
trQai

Var(Xt) = QeΛi(τi−t)trQVar(Xτi)Qe
(τi−t)Λi trQ+ σ2Q

(∫ t

τi

e2(s−t)Λids

)
trQ

This is the expression that we need for the numerical integration, in particular, of the223

phenotype matching model.224

Note that with A diagonalizable but not symmetric, Equations (4a, 4b) can also be225

reduced, but the transposition of A is no longer A, and it does not lead exactly to the same226

expression.227

C.2 The phenotype matching (PM) model228

We consider here the phenotype matching model introduced in Nuismer and Harmon (2014),229

with the following equation describing the evolution of any trait k through each epoch :230

dX
(k)
t = ψ

(
θ −X(k)

t

)
dt+ S

((
1

nt

nt∑
l=1

X
(l)
t

)
−X(k)

t

)
dt+ σdW

(k)
t

18

We introduce the line vector u, with value uj that equals 1 if lineage j is alive, and 0231

otherwise. In order to use our framework, we further want to express the model in the form given232

by Equation (2). This is achieved by taking :233

ai = ψθtru

Ai = (ψ + S)diag(u)− S

utru
truu

Γi = σdiag(u)

where diag(u) is the diagonal matrix with diagonal elements the elements of the vector u.234

First, the tip distribution can be computed using the general algorithm that numerically235

resolves the set of ODEs given in Equations (5a, 5b). Second, the PM model falls within the236

class of models studied in the previous section, that is, with a symmetric A matrix. The tip237

distribution can thus be numerically computed faster using this reduction.238

We describe here a third (and faster) way to derive the tip distribution. It is based on an239

analytical reduction of Equations (4a, 4b) that is specific to the PM model.240

Remark that diag(u) and truu commute, leading to the following calculus,241

e(τi−τi+1)Ai = e(τi−τi+1)((ψ+S)diag(u)− S
utru

truu)

= e(τi−τi+1)(ψ+S)diag(u)e−(τi−τi+1) S
utru

truu

= diag
(
e(τi−τi+1)(ψ+S)u

)∑
k≥0

(
−(τi−τi+1)S

utru

)k
(truu)k

k!


Where ew is the line vector with elements ewj . Further, remark that for any k ≥ 1,242

(truu)k = (truu)(truu)(truu)...(truu)

= tru(utru)(utru)...(utru)u

= (utru)k−1(truu)

For simplicity, we will write in the following ∆ = τi − τi+1, leading us to243

19

e∆Ai = diag
(
e(ψ+S)∆u

)(
I +

∑
k≥1

(−S∆
utru

)k
(utru)k−1(truu)

k!

)

= diag
(
e(ψ+S)∆u

)(
I +

1

utru

(∑
k≥1

(−(τi − τi+1)S)k

k!

)
truu

)

= diag
(
e(ψ+S)∆u

)(
I +

1

utru

(
e−S∆ − 1

)
truu

)
= diag

(
e(ψ+S)∆u

)
+

1

utru
diag

(
e−S∆e(ψ+S)∆u

)
truu− 1

utru
diag

(
e(ψ+S)∆u

)
truu

= diag
(
e(ψ+S)∆u

)
+

1

utru
(eψ∆ − e(ψ+S)∆) truu (S14)

Where the last equality is due to the product by tru, allowing to forget the cases where244

uj = 0 in the exponential.245

We further need to compute246

∫ τi+1

τi

e(s−τi+1)Aiaids = ψθ

∫ τi+1

τi

eψ(s−τi+1)ds tru

= θ
(
1− eψ∆

)
tru (S15)

We thus get mτ−i+1
with the help of Equations (S14) and (S15).247

Now, in order to simplify Equation (4b), remark that Ai and Γi are symmetric, and so are248

e∆Ai and e∆AiΓi. Moreover, Γi is diagonal, and commutes with any other matrix, leading to,249

Στ−i+1
= e∆AiΣτie

∆Ai +

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids

The first term can be computed thanks to Equation (S14). For the second one, remark250

that truu diag(u) = truu, thus leading to251

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids = σ2

∫ τi+1

τi

e2(ψ+S)(s−τi+1)ds diag(u)

+
σ2

utru

∫ τi+1

τi

(
e2ψ(s−τi+1) − e2(ψ+S)(s−τi+1)

)
ds truu diag(u)

= σ2 (1− e2(ψ+S)∆)

2(ψ + S)
diag(u) +

σ2

utru

(
1− e2ψ∆

2ψ
− 1− e2(ψ+S)∆

2(ψ + S)

)
truu

(S16)

20

We thus get Στ−i+1
with the help of Equations (S14) and (S16).252

C.3 The phenotype matching (PM) model with biogeography253

In this section we describe ways to compute the tip distribution under the PM model, taking into254

account the biogeography (that is, species interact only when they co-occur in the same255

localities). We consider a fixed number of islands NI . Matrix U gives us the presence/absence of256

lineages in the distinct islands, with element uij that equals 1 if lineage j is present on island i257

and zero otherwise. Vector S gives the strength of interaction on each island. The model states258

that the trait of lineage j evolves through phenotype matching with all species that are259

sympatric :260

dX
(j)
t = ψ

(
θ −X(j)

t

)
dt+

NI∑
i=1

Siuij

(∑n
l=1 uilX

(l)
t∑n

l=1 uil
−X(j)

t

)
dt+ σdW

(j)
t

Take for example 5 lineages evolving on 3 distinct islands with the following U matrix on261

a given epoch :262

U =


0 1 1 0 0

1 0 1 1 0

1 0 0 0 1


This means that species number 1 is present on island 2 and 3, species number 2 is only263

present on island 1, and so on... Said differently, we see that species number 3 interacts on island264

1 with species 2, and on island 2 with species 1 and 4. Our species traits are driven by the265

following equations :266

21

dX
(1)
t =

(
ψ
(
θ −X(1)

t

)
+ S2

(
X

(1)
t +X

(3)
t +X

(4)
t

3
−X1

t

)
+ S3

(
X

(1)
t +X

(5)
t

2
−X1

t

))
dt+ σdW

(1)
t

dX
(2)
t =

(
ψ
(
θ −X(2)

t

)
+ S1

(
X

(2)
t +X

(3)
t

2
−X2

t

))
dt+ σdW

(2)
t

dX
(3)
t =

(
ψ
(
θ −X(3)

t

)
+ S1

(
X

(2)
t +X

(3)
t

2
−X3

t

)
+ S2

(
X

(1)
t +X3

t +X
(4)
t

3
−X3

t

))
dt+ σdW

(3)
t

dX
(4)
t =

(
ψ
(
θ −X(4)

t

)
+ S2

(
X

(1)
t +X3

t +X
(4)
t

3
−X4

t

))
dt+ σdW

(4)
t

dX
(5)
t =

(
ψ
(
θ −X(5)

t

)
+ S3

(
X

(1)
t +X

(5)
t

2
−X5

t

))
dt+ σdW

(5)
t

267

It thus follows that the vectorial equation can be written :268

dXt =





ψθ

ψθ

ψθ

ψθ

ψθ


−



ψ + 2
3S2 +

1
2S3 0 −S2

3 −S2
3 −S3

2

0 ψ + 1
2S1 −S1

2 0 0

−S2
3 −S1

2 ψ + 1
2S1 +

2
3S2 −S2

3 0

−S2
3 0 −S2

3 ψ + 2
3S2 0

−S1
2 0 0 0 ψ + 1

2S1


Xt


dt+ σdWt

269

Provided no island is empty, the model can be written in our framework with a = ψθV ,270

Γ = σI, and, finally, A which is the matrix with elements :271

(A)jj = ψ +

NI∑
i=1

Siuij(1−
1∑n
l=1 uil

)

(A)jk = −
NI∑
i=1

Siuijuik
1∑n
l=1 uil

Matrix A is symmetric, and we can thus use the developments presented in Appendix C.1272

to speed up the computation time.273

Nonetheless, a better analytical reduction can be derived when islands are exclusive,274

meaning that species are allowed to occur on one island only. Under this assumption, matrix275

UTU is diagonal with element (UTU)ii being the number of lineages belonging to island i. We276

22

now introduce the line vector r, of size NI , full of ones. For simplicity, we also write in the277

following ∆ = τi − τi+1. With these notations, and provided no island is empty, the model can be278

written under our framework with :279

ai = ψθ T (rU)

Ai = diag((ψr + S)U)− TUdiag(S)(UTU)−1U

Γi = σdiag(rU)

As for the one island case, we can speed up the computation of the exponential by280

remarking that :281

e∆Ai = e∆ diag((ψr+S)U)e−∆ TUdiag(S)(UTU)−1U

= e∆ diag((ψr+S)U)
∑
k≥0

(−∆TUdiag(S)(UTU)−1U)k

k!

We then observe that :282

(−∆TUdiag(S)(UTU)−1U)k

=(−∆TUdiag(S)(UTU)−1U)(−∆TUdiag(S)(UTU)−1U)...(−∆TUdiag(S)(UTU)−1U)

=TU(−∆diag(S))(UTU)−1(UTU)(−∆diag(S))(UTU)−1(UTU)...(UTU)(−∆diag(S))(UTU)−1U

=TU(−∆diag(S))k(UTU)−1U

Thus leading to the following expression :283

23

e∆Ai = e∆diag((ψr+S)U)

(
I +

∑
k≥1

(−∆TUdiag(S)(UTU)−1U)k

k!

)

= diag(e∆(ψr+S)U)

(
I + TU

(∑
k≥1

(−∆diag(S))k

k!

)
(UTU)−1U

)

= diag(e∆(ψr+S)U)
(
I + TU

(
diag(e−∆S)− I

)
(UTU)−1U

)
= diag(e∆(ψr+S)U)

(
I − TU(UTU)−1U

)
+ diag(e∆(ψr+S)U)TUdiag(e−∆S)(UTU)−1U

= diag(e∆(ψr+S)U)
(
I − TU(UTU)−1U

)
+ diag(e∆(ψr+S)U)diag(e−∆SU) TU(UTU)−1U

= diag(e∆(ψr+S)U)
(
I − TU(UTU)−1U

)
+ diag(e∆ψrU) TU(UTU)−1U (S17)

Where the second to last line holds under the assumption that each species belong to at284

most one island.285

We further need to compute286

∫ τi+1

τi

e(s−τi+1)Aiaids = ψθ

∫ τi+1

τi

diag(e(s−τi+1)ψrU)ds TUT r

= ψθ

∫ τi+1

τi

e(s−τi+1)ψds TUT r

= θ
(
1− eψ∆

)
TUT r (S18)

We thus get mτ−i+1
with the help of Equations (S17) and (S18).287

We now turn to the reduction of the variance expression. Remark first that Ai and Γi are288

symmetric, and so are e∆Ai and e∆AiΓi. Moreover, Γi is diagonal, and commutes with e∆Ai ,289

leading to :290

Στ−i+1
= e∆AiΣτie

∆Ai +

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids

The first term can be computed thanks to equation (S17). For the second one we get291

24

∫ τi+1

τi

e2(s−τi+1)AiΓiΓids = σ2

∫ τi+1

τi

e2(s−τi+1)diag(r(ψI+S)U)ds
(
I − TU(UTU)−1U

)
diag(rU)

+ σ2

∫ τi+1

τi

e2(s−τi+1)ψ diag(rU)ds TU(UTU)−1U diag(rU)

= σ2

∫ τi+1

τi

diag(e2(s−τi+1)(ψr+S)U)ds
(
diag(rU)− TU(UTU)−1U

)
+ σ2

∫ τi+1

τi

diag(e2(s−τi+1)ψrU)ds TU(UTU)−1U (S19)

At the end, we get Στ−i+1
with the help of Equations (S17) and (S19).292

C.4 The generalist matching mutualism (GMM) model293

We recall the model formulation here. Assume that we rank first the n1 plant traits, before the294

n2 butterfly traits in the X vector. Traits evolve following the equation :295

∀k ∈ {1, ..., n1}, dX(k)
t = S

(
d1 +

1

n2

n1+n2∑
l=n1+1

X
(l)
t −X

(k)
t

)
dt+ σdW

(k)
t

∀l ∈ {n1 + 1, ..., n1 + n2}, dX(l)
t = S

(
d2 +

1

n1

n1∑
k=1

X
(k)
t −X

(l)
t

)
dt+ σdW

(l)
t

In the general framework formulation, this leads to :296

a(t) = tr(Sd1, ..., Sd1, Sd2, ..., Sd2)

A =



S 0 . . . 0 −S
n2

. −S
n2

0
.

...
...

... 0
...

...

0 . . . 0
. . . −S

n2
. −S

n2

−S
n1

. −S
n1

. . . 0 . . . 0

...
... 0

.
...

...
... 0

−S
n1

. −S
n1

0 . . . 0 S


Γ = σI

25

We would like to be able to compute the expectation and variance easily during each297

epoch. We thus want to reduce Equations (4a, 4b). For simplicity, we will write in the following298

∆ = τi − τi+1. With some work, we can find the generic element of the matrix e∆A.299

First, we decompose A = S(I + Z), where I is the identity matrix, and Z is made of two300

blocks with elements −1
n2

and −1
n1
. I and Z commute, meaning that :301

e∆A = e∆S(I+Z) = e∆SIe∆SZ = e∆Se∆SZ

Moreover, we can find by induction the generic element of the matrix Zk, as presented in302

Figure (S2).303

Figure S2: Generic element of the matrix Zk, ∀k ∈ N∗.

We then use this to find the generic element of the matrix304

e∆SZ =
∑

k≥0
Sk∆kZk

k!
= I +

∑
k≥1

Sk∆kZk

k!
. We recall that the odd and even parts of the305

exponential are :306

26

eλ − e−λ =
∑
k≥0

λk

k!
−
∑
k≥0

(−1)kλk

k!
= 2

∑
k≥0

λ2k+1

(2k + 1)!

and eλ + e−λ = 2
∑
k≥0

λ2k

(2k)!

Then, matrices e∆SZ and e∆A are composed of four distinct blocks, which expressions are307

shown in Figure S3.308

Figure S3: Generic elements of matrices e∆SZ and e∆A.

27

We thus got the main element from which we can derive the expectation vector mτ−i+1
:309

mτ−i+1
= e∆Aimτi +

∫ τi+1

τi

e(s−τi+1)Aiai(s)ds

= e∆Aimτi +

∫ τi+1

τi



Sd1e
S(s−τi+1) + Sd1

e2S(s−τi+1)−2eS(s−τi+1)+1
2

+ Sd2
1−e2S(s−τi+1)

2

...

Sd1e
S(s−τi+1) + Sd1

e2S(s−τi+1)−2eS(s−τi+1)+1
2

+ Sd2
1−e2S(s−τi+1)

2

Sd2e
S(s−τi+1) + Sd1

1−e2S(s−τi+1)

2
+ Sd2

e2S(s−τi+1)−2eS(s−τi+1)+1
2

...

Sd2e
S(s−τi+1) + Sd1

1−e2S(s−τi+1)

2
+ Sd2

e2S(s−τi+1)−2eS(s−τi+1)+1
2


ds

mτ−i+1
= e∆Aimτi +

∫ τi+1

τi



S d1+d2
2

+ S d1
2
e2S(s−τi+1) − S d2

2
e2S(s−τi+1)

...

S d1+d2
2

+ S d1
2
e2S(s−τi+1) − S d2

2
e2S(s−τi+1)

S d1+d2
2
− S d1

2
e2S(s−τi+1) + S d2

2
e2S(s−τi+1)

...

S d1+d2
2
− S d1

2
e2S(s−τi+1) + S d2

2
e2S(s−τi+1)


ds

= e∆Aimτi +



−S d1+d2
2

∆ + d1
4

(1− e2S∆)− d2
4

(1− e2S∆)

...

−S d1+d2
2

∆ + d1
4

(1− e2S∆)− d2
4

(1− e2S∆)

−S d1+d2
2

∆− d1
4

(1− e2S∆) + d2
4

(1− e2S∆)

...

−S d1+d2
2

∆− d1
4

(1− e2S∆) + d2
4

(1− e2S∆)


We now turn to the derivation of the covariance matrix, which requires simplifying :310

∫ τi+1

τi

(
e(s−τi+1)AiΓi(s)

)
tr
(
e(s−τi+1)AiΓi(s)

)
ds = σ2

∫ τi+1

τi

(
e(s−τi+1)Ai

)
tr
(
e(s−τi+1)Ai

)
ds

The expression of this last matrix is given in Figure S4.311

28

Figure S4: Generic elements of matrices that help us compute the covariance matrix of the

distribution.

29

D Simulation and Inference312

We do not give any new result in this Appendix section. Instead, we present the ways we313

implemented numerically simulations and inferences for all models described in the paper. These314

have been previously described in a number of papers.315

D.1 Numerical methods for simulating data316

D.1.1 Simulating the whole trajectory of the process317

We use the Euler-Maruyama scheme, which works like the Euler scheme for ODEs, but with the318

addition of a small Gaussian random variable at each time step (Gardiner et al. 1985). We319

discretize each epoch (τi, τi+1) with a mesh ∆t. We consider m standard Gaussian vectors of320

dimension nd : (Uj)
m
j=1. We approximate our SDE on this interval in the following way :321

Y0 = X0

Yτi+m∆t = Yτi+(m−1)∆t + (ai(τi + (m− 1)∆t)− AiYτi+(m−1)∆t)∆t + Γ(τi + (m− 1)∆t)
√

∆tUm

When a branching occurs, the values of the process on the splitting branch are duplicated322

at the end of the vector Y . We then iterate this operation from the root up to present time.323

This simulation allows us to get the whole trajectory of the process on the tree, which can324

mainly be used to produce pictures as in Figure S5, and eventually get a useful intuition on the325

process. However, we rarely use the whole trajectories, because observed data are only composed326

of tip trait values.327

D.1.2 Simulating values of the process at the tips only328

This second simulation protocol allows us to simulate the process values at the tips only. Suppose329

that we know the vector m of expectations and the covariance matrix Σ at the tips of the tree.330

We then simply simulate numerically a Gaussian vector with law :331

30

Figure S5: Evolution of a Brownian phenotypic trait along a tree, following the SDE : dXt =

σIdWt.

Xtf ∼ N (m , Σ)

This is by far the quickest way to get the tip values. However, as the inference protocol332

relies on the use of the same vector of expectations and covariance matrix, one may prefer to use333

the other simulation protocols to test the consistency between simulation and inference. In case334

there is an issue with the derivation of the tip distribution, there would be a discrepancy between335

simulations and inferences.336

D.2 Parameter inference337

D.2.1 Parameter inference principle338

We consider here that we know the topology of the true phylogeny with K tips, its branch339

lengths, and the state of d phenotypic traits at the tip, denoted by X .340

We assume any model of phenotypic evolution relying on linear SDEs, with vector of341

parameters p. We can compute the expectation mp and the covariance Σp of the process X at342

tree tips, which law is then : X ∼ N (mp,Σp). Recall from Appendix A.2 that Σp is positive343

31

definite in most cases, and is thus theoretically non-singular. However, one must be cautious with344

numerical implementations, as numerical approximations might still lead to ‘numerically345

non-invertible’ matrices. Here, we assume that the variance matrix is invertible, and the density346

of the vector X is :347

∀x ∈ RKd, f(x) =
1√

(2π)Kd det(Σp)
e−

1
2
tr(x−mp)Σ−1

p (x−mp)

We can thus write the likelihood of the observed phenotypic traits as,348

L(p) = f(X|p)

=
1√

(2π)Kd det(Σp)
e−

1
2
tr(X−mp)Σ−1

p (X−mp)

The maximum likelihood estimators (MLE) are the parameter values that maximize the349

likelihood function, that is,350

p̂ = argmax
p

L(p)

Equivalently, we can minimize the following function,351

− ln(L(p)) =
1

2
Kd ln(2π) +

1

2
ln(det(Σp)) +

1

2
tr(X −mp)Σ

−1
p (X −mp)

or, removing the constants,352

U(p) = ln(det(Σp)) + tr(X −mp)Σ
−1
p (X −mp)

D.2.2 Analytical derivation of the MLE353

Among all models described in the paper, only the BM model allows the analytic derivation of354

the MLE estimators. Take for illustration a BM model without drift starting with355

(m0, v0) = (0, 0). According to Table S1, the expectation m and covariance matrix Σ at the tips356

are m = 0 and Σ = σ2T , where matrix T has element T (k,l) = tk,l.357

32

We get the MLE σ̂ by looking analytically for the minimum of U ,358

U(σ) = ln(det(σ2T)) + trX T
−1

σ2
X

= ln detT + 2n lnσ +
1

σ2
trXT−1X

dU

dσ
=

2n

σ
− 2

σ3
trXT−1X

Thus leading to,359

σ̂2 =
1

n
trXT−1X

D.2.3 Speeding up the ML estimation by reducing the dimension of the parameter space360

Maximizing the likelihood can take a long time, especially when the dimension of the parameter361

space is large. It can thus be interesting to make assumptions that lower the number of362

parameters, when this is biologically tolerable. Examples include,363

• starting an OU process with m0 = θ,364

• considering no root variance, v0 = 0,365

• starting a PM model with m0 = θ (in which case we easily show that the expectation366

remains θ in all lineages),367

• putting ψ = 0 in the PM model.368

In many models (e.g. BM, OU, ACDC, PM with m0 = θ...), distinct sets of parameters p1369

and p2 are involved in the computation of m and Σ, and the expectation vector m can be370

expressed as m = Cp1. In this case, at a given p2, we can analytically get the parameters p1371

maximizing ln(L(p1, p2)),372

∂

∂p1

U(p1, p2) = 0 ⇐⇒ d

dp1

tr(X − Cp1)Σ−1
p2

(X − Cp1) = 0

Doing so, we get the same formula as in (Hansen 1997; Butler and King 2004), i.e.373

p̂1 =
(
trC1Σ−1

p2
C1

)−1 trC1Σ−1
p2
X.374

33

E Tutorial : using the RPANDA code to study trait375

coevolution376

The aim of this section is to describe the R code associated to our framework. We describe the377

class PhenotypicModel, we show how to manipulate the different methods included in the class,378

we illustrate their use around a simple (non-ultrametric) tree, and we finally explain how to use379

our codes to write new models fitting the framework.380

We first need to load useful R packages, along with our codes, and a small,381

non-ultrametric, tree.382

In [219]: source("Loading.R")

newick <- "((((A:1,B:0.5):2,(C:3,D:2.5):1):6,E:10.25):2,(F:6.5,G:8.25):3):1;"

tree <- read.tree(text=newick)

plot(tree)

383

34

E.1 The ’PhenotypicModel’ class384

Our code is structured around one main R class that we called ‘PhenotypicModel’, which is385

intended to mimic the framework that we proposed in the main text. Each object of the386

‘PhenotypicModel’ encompasses informations on the tree, on the parameters of the model, on the387

starting values, and, finally, on the collection of (ai, Ai,Γi) for all epochs.388

E.1.1 Loading a pre-defined model389

Because we wanted this code both to be user-friendly and to serve as an illustration of what can390

be written within this framework, we implemented all models in main Table 1 in a generic391

constructor createModel, in the file ‘ModelBank.R’, that takes for arguments the tree and the392

name of the required model.393

Available models include :394

BM Brownian Motion model with linear drift.395

Starts with two lineages having the same value X0 ∼ N (m0, v0).396

One trait in each lineage, all lineages evolving independently after branching following the397

equation.398

dX
(i)
t = ddt+ σdW

(i)
t

BM_from0 Same as above, but starting with two lineages having the same value X0 ∼ N (0, 0).399

BM_from0_driftless Same as above, but with d = 0.400

OU Ornstein-Uhlenbeck model.401

Starts with two lineages having the same value X0 ∼ N (m0, v0).402

One trait in each lineage, all lineages evolving independently after branching, following the403

equation :404

dX
(i)
t = ψ(θ −Xt)dt+ σdW

(i)
t

35

OU_from0 Same as above, but starting with two lineages having the same value X0 ∼ N (0, 0).405

ACDC ACcelerating or DeCelerating model.406

Starts with two lineages having the same value X0 ∼ N (m0, v0).407

One trait in each lineage, all lineages evolving independently after branching, following the408

equation :409

dX
(i)
t = σ0e

rtdW
(i)
t

DD Diversity-Dependent model.410

Starts with two lineages having the same value X0 ∼ N (m0, v0).411

One trait in each lineage, all lineages evolving independently after branching, following the412

equation :413

dX
(i)
t = σ0e

rntdW
(i)
t

PM Phenotype Matching model.414

Starts with two lineages having the same value X0 ∼ N (m0, v0).415

One trait in each lineage, all lineages evolving then non-independently following the416

expression :417

dX
(i)
t = ψ

(
θ −X(i)

t

)
+ S

(
1

n

n∑
k=1

X
(k)
t −X

(i)
t

)
+ σdW

(i)
t

PM_OUless Simplified Phenotype Matching model.418

Starts with two lineages having the same value X0 ∼ N (m0, v0).419

One trait in each lineage, all lineages evolving then non-independently following the420

expression :421

dX
(i)
t = S

(
1

n

n∑
k=1

X
(k)
t −X

(i)
t

)
+ σdW

(i)
t

36

To get a first glimpse at ‘PhenotypicModel’ objects, we first create two such objects. The422

first one is a Brownian Motion (BM), the second one is an Ornstein-Uhlenbeck process (OU).423

Note that both models include m0 and v0 as parameters.424

In [220]: modelBM <- createModel(tree, ’BM’)

modelOU <- createModel(tree, ’OU’)

E.1.2 Access to the content of the model425

The function show is intended to give basic information on a specific ‘PhenotypicModel’ object,426

whereas the print function displays full information.427

In [221]: show(modelBM)

**

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "BM"

*** Parameters of the model : [1] "m0" "v0" "d" "sigma"

*** Description : Brownian Motion model with linear drift.

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = d dt + sigma dW_t

*** Periods : the model is cut into 13 parts.

For more details on the model, call : print(PhenotypicModel)

**

In [222]: print(modelOU)

**

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "OU"

*** Parameters of the model : [1] "m0" "v0" "psi" "theta" "sigma"

*** Description : Ornstein-Uhlenbeck model.

37

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = psi(theta- X_t) dt + sigma dW_t

*** Epochs : the model is cut into 13 parts.

[1] 0.00 2.00 3.00 8.00 9.00 9.50 10.00 10.50 11.00 11.25 11.50 12.00

[13] 12.25

*** Lineages branching (to be copied at the end of the corresponding period) :

[1] 1 1 2 1 5 2 1 7 1 4 6 5 3

*** Positions of the new trait at the end of each period :

[1] 2 3 4 5 6 0 7 0 0 0 0 0 0

*** Initial condition :

function (params)

return(list(mean = c(params[1]), var = matrix(c(params[2]))))

<environment: 0x9617460>

*** Vectors a_i, A_i, Gamma_i on each period i :

function (i, params)

{

vectorU <- getLivingLineages(i, eventEndOfPeriods)

vectorA <- function(t) return(params[3] * params[4] * vectorU)

matrixGamma <- function(t) return(params[5] * diag(vectorU))

matrixA <- params[3] * diag(vectorU)

return(list(a = vectorA, A = matrixA, Gamma = matrixGamma))

}

<environment: 0x9617460>

*** Constraints on the parameters :

function (params)

return(params[2] >= 0 && params[5] >= 0 && params[3] != 0)

<environment: 0x9617460>

*** Defaut parameter values : [1] 0 0 1 0 1

*** Tip labels :

38

[1] "A" "B" "C" "D" "E" "F" "G"

*** Tip labels for simulations :

[1] "A" "F" "E" "G" "C" "D" "B"

**

E.1.3 List of class attributes428

The latter command gave us some insight into how a PhenotypicModel is defined. It has the429

following list of attributes :430

name a name,431

paramsNames the names of all parameters,432

comment a short description,433

period the vector of times at which successive branching and death of lineages occur,434

numbersCopy vector containing the lineage number which branches or dies at the end of each435

period,436

numbersPaste vector containing the lineage number in which a daughter lineage is placed at437

the end of each period (zero if the end of the period corresponds to a death),438

initialCondition a function of the parameters giving the initial mean and variance of the439

gaussian process at the root of the tree,440

aAGamma the functions corresponding to ai(t), Ai, and Γi(t) that define the evolution of the441

process on each period, depending on parameters,442

constraints a function of the parameters giving the definition range,443

params0 a vector of defaut parameter values.444

Each of these attributes can be accessed and changed through the use of the following445

syntax.446

39

In [223]: modelBM[’name’]

Out[223]: ‘BM’447

In [224]: modelBM[’paramsNames’]

Out[224]: ’m0’ ’v0’ ’d’ ’sigma’448

In [225]: modelOU[’paramsNames’] <- c("mean0", "var0", "selectionStrength", "equilibrium",

"noise")

show(modelOU)

**

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "OU"

*** Parameters of the model : [1] "mean0" "var0" "selectionStrength"

[4] "equilibrium" "noise"

*** Description : Ornstein-Uhlenbeck model.

Starts with two lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving independently after branching.

dX_t = psi(theta- X_t) dt + sigma dW_t

*** Periods : the model is cut into 13 parts.

For more details on the model, call : print(PhenotypicModel)

**

However, changes must be made cautiously, in order to keep a coherent model. For449

example, changing ‘paramsNames’ for a shorter vector would not be authorized, but other450

deleterious actions could work and lead to issues with methods associated to PhenotypicModel451

objects.452

In [226]: modelOU[’paramsNames’] <- c("mean0", "var0")

Error in validityMethod(as(object, superClass)): [PhenotypicModel : validation]

There should be the same number of defaut parameters and parameter names.

40

E.2 Methods associated to the ’PhenotypicModel’ class453

All ‘PhenotypicModel’ objects are associated to methods intended to do the basic operations454

that we need to do with models of trait evolution, i.e.,455

1. simulate tip trait data,456

2. compute the likelihood of tip trait data,457

3. fit the model to tip trait data.458

E.2.1 Simulating tip trait data459

The method simulateTipData works for any PhenotypicModel object. We simply give it the460

model and the set of parameters and it returns a realisation of the process (tip data).461

In [227]: dataBM <- simulateTipData(modelBM, c(0,0,0,1))

dataBM

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, but returns only the tip data.

Computation time : 0.3909395 secs

Out[227]:462

A -2.71863

F 1.043329

E 0.665404

G -3.440327

C 0.272335

D -0.7023421

B -2.010951

463

464

A third, optional, argument, changes the behaviour of the method.465

• "method=1" : first computes the tip distribution at present, before drawing a realization of466

this distribution,467

41

• "method=2" : simulates step-by-step the whole trajectory of the process, plots the468

trajectories through time, and returns the tip data.469

• "method=3" : (default) simulates step-by-step the whole trajectory of the process, before470

returning only the tip data.471

In [228]: dataOU <- simulateTipData(modelOU, c(0,0,1,5,1), method=1)

dataOU

*** Simulation of tip trait values ***

Computes the tip distribution, and returns a simulated dataset drawn in this distribution.

Computation time : 0.0009741783 secs

Out[228]:472

A 4.179412

B 5.776153

C 4.984526

D 4.480901

E 5.693471

F 4.636019

G 5.815942

473

In [229]: simulateTipData(modelBM, c(0,0,0,1), method=2)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, plots it, and returns tip data.

Computation time : 0.479032 secs

Out[229]:474

A 1.850113

F -1.846854

E -0.6321431

G 4.701758

C -0.1940776

D -2.077116

B -0.7752916

475

42

476

E.2.2 Getting the distribution of the model under a given set of parameters477

The method getTipDistribution computes the mean vector m and variance matrix Σ such478

that, under the model, the tip trait data X follows N (m,Σ).479

The related method getDataLikelihood returns the -ln(likelihood) of a given data set480

under the model, with a given set of parameters.481

In [230]: getTipDistribution(modelBM, c(0,0,1,1))

Out[230]:482

43

$mean

A 11

B 10.5

C 12

D 11.5

E 12.25

F 9.5

G 11.25

483

$Sigma

A B C D E F G

A 11 10 8 8 2 0 0

B 10.0 10.5 8.0 8.0 2.0 0.0 0.0

C 8 8 12 9 2 0 0

D 8.0 8.0 9.0 11.5 2.0 0.0 0.0

E 2.00 2.00 2.00 2.00 12.25 0.00 0.00

F 0.0 0.0 0.0 0.0 0.0 9.5 3.0

G 0.00 0.00 0.00 0.00 0.00 3.00 11.25

484

In [231]: getDataLikelihood(modelBM, dataBM, c(0,0,1,1))

Out[231]: 36.0510113479088485

E.2.3 Maximum likelihood estimation of parameters486

The method fitTipData uses the latter two methods to find the set of parameters that487

minimizes -ln(likelihood) for a given model, on a given data set. We can apply this method to488

simulated datasets, and compare the maximum likelihood estimators with the parameters used in489

the simulation.490

Note that this function accepts a third, optional, parameter, that is the starting vector491

‘params0’ given to optimize the likelihood. If no value is specified, the function takes the492

attribute ‘params0’ in the PhenotypicModel object.493

In [232]: fitTipData(modelBM, dataBM)

44

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 0.02105212 secs

Out[232]:494

$value 13.3539168672421495

$inferredParams m0 0.112360024529455496

v0 4.3703974585017e-08497

d -0.0733871266399529498

sigma 0.64761762031608499

In [233]: fitTipData(modelOU, dataOU)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 0.2915776 secs

Out[233]:500

$value 7.5162883379935501

$inferredParams mean0 13.5665180225751502

45

var0 1.6815664554916e-05503

selectionStrength 0.648513938633288504

equilibrium 5.05532921748184505

noise 0.766630199120977506

It doesn’t seem quite good, but it also seems like the choice in the starting parameters507

m0, v0 has a bad influence. As presented in Online Appendix D.2, in many models (e.g. BM, OU,508

ACDC, PM with m0 = θ. . .), distinct sets of parameters p1 and p2 are involved in the509

computation of m and Σ, and the expectation vector m can be expressed as m = Cp1. In510

particular, many models verify m = tr(m0,m0, ...m0). When this is the case, the fit of tip data511

can be improved and speeded up by using the third parameter of the function GLSstyle=TRUE.512

In [234]: fitTipData(modelBM, dataBM, GLSstyle=TRUE)

fitTipData(modelOU, dataOU, GLSstyle=TRUE)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 0.03260899 secs

Out[234]:513

$value 13.5302740469078514

$inferredParams m0 -0.00550320295296933515

v0 2.28469756397133e-07516

d -0.313019528308928517

sigma 0.663621107698308518

46

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

Computation time : 0.1760004 secs

Out[234]:519

$value 7.82305350777471520

$inferredParams mean0 5.10957361631891521

var0 3.36222531349288e-05522

selectionStrength 1.87722870245168523

equilibrium -1.98889519193151524

noise 1.91905948952067525

With so few data in hand, we could also prefer to consider directly models starting with526

(m0, v0) = (0, 0). We create two new models ‘BM_from0’ and ‘OU_from0’ with the subtle527

difference that (m0, v0) = (0, 0) and the models thus retain respectively only two and three528

parameters.529

These two models are included in the ‘ModelBank’ file.530

In [235]: modelBMfromZero <- createModel(tree, ’BM_from0’)

modelBMfromZero[’paramsNames’]

Out[235]: ’d’ ’sigma’531

In [236]: modelOUfromZero <- createModel(tree, ’OU_from0’)

modelOUfromZero[’paramsNames’]

Out[236]: ’psi’ ’theta’ ’sigma’532

In [237]: fitTipData(modelBMfromZero, dataBM)

47

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 0.01061678 secs

Out[237]:533

$value 13.3540474589618534

$inferredParams d -0.0633929373190768535

sigma 0.647501517840828536

The fitTipData function uses the optim function available in R to maximize the537

likelihood. This optimizer is widely used to fit phenotypic models, but is known to sometimes538

converge on a local optima rather than the maximum likelihood. It is thus important to assess the539

sensitivity of the solution to the choice of the initial parameter values before drawing conclusions.540

Finally, the functions getTipDistribution, simulateTipData and fitTipData all have a541

last optional argument, called v for “verbose mode”. With v=TRUE, the functions gives542

informations in the console, whereas with v=FALSE the function remains silent.543

E.3 Toward an in-depth understanding of the code structure544

This section can be skipped if you are not interested in using this framework to build your own545

model. Otherwise, it is worth understanding how the different models relate to each others.546

E.3.1 Relationships between the different classes of models547

The superclass, for which all the above-mentionned functions are defined, is the548

PhenotypicModel class. When a model is only known as a PhenotypicModel, the method that549

48

computes the tip distribution, namely getTipDistribution is the most general one. It thus550

computes the distribution by resolving numerically the ODE system presented in main text551

Equations (5a, 5b), which can take a lot of time.552

However, faster algorithms are available to compute the tip distribution under specific553

models (see e.g. analytical tip distribution formulas in Table S1). This is the rationale to define554

subclasses :555

PhenotypicBM For the Brownian model.556

PhenotypicOU For the Ornstein-Uhlenbeck model.557

PhenotypicACDC For the Accelerating/Decelerating model.558

PhenotypicDD For the Diversity-Dependent model.559

PhenotypicPM For the Phenotype-Matching model.560

PhenotypicGMM For the Generalist Matching Mutualism model.561

PhenotypicADiag Models for which, ∀i, Ai is symmetric and Γi = σI.562

For each of these subclasses, an other, more appropriated, function getTipDistribution563

has been written. PhenotypicModels which are also PhenotypicOU, will preferentially use564

methods defined for PhenotypicOU when they exist.565

E.3.2 Application : three different ways to define an OU566

In the createModel function, the keyword ‘OU’ constructs a model in the class PhenotypicOU.567

In this class, the function getTipDistribution uses the analytical formula show in Online568

Appendix B.1 to speed up the computation of m and Σ.569

Alternatively, the keyword ‘OUbis’ defines the exact same model, but as an instance of570

the class PhenotypicADiag. Thus, the function getTipDistribution uses the reduction show in571

Online Appendix C.1 to compute m and Σ.572

49

Last, the keyword ‘OUter’ still defines the exact same model, but as an instance of the573

class PhenotypicModel. Thus, the function getTipDistribution uses the resolution of the ODE574

system to compute m and Σ.575

The following lines of code show that the function returns the same value with the three576

different methods, but do not take the same amount of time.577

In [240]: modelOU <- createModel(tree, ’OU’)

modelOUbis <- createModel(tree, ’OUbis’)

modelOUter <- createModel(tree, ’OUter’)

params <- c(0,0,0.2,1,2)

In [241]: getTipDistribution(modelOU, params, v=TRUE)

*** Computation of tip traits distribution through the analytical formula for an OU process ***

Computation time : 0.000497818 secs

Out[241]:578

$mean

A 0.8891968

B 0.8775436

C 0.909282

D 0.8997412

E 0.9137064

F 0.8504314

G 0.8946008

579

$Sigma580

A B C D E F G

A 9.8772266 7.2724966 2.3654513 2.6142280 0.1171813 0.0000000 0.0000000

B 7.2724966 9.8500442 2.6142280 2.8891687 0.1295054 0.0000000 0.0000000

C 2.36545128 2.61422796 9.91770253 3.23775807 0.09593997 0.00000000 0.00000000

D 2.6142280 2.8891687 3.2377581 9.8994816 0.1060301 0.0000000 0.0000000

E 0.11718135 0.12950541 0.09593997 0.10603007 9.92553417 0.00000000 0.00000000

F 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 9.7762923 0.3657529

G 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.3657529 9.8889100

581

50

In [242]: getTipDistribution(modelOUbis, params, v=TRUE)

*** Computation of tip traits distribution through integrated formula ***

(Method working for models with a constant, A diagonalizable, and Gamma constant)

Computation time : 0.002770185 secs

Out[242]:582

$mean

A 0.8891968

F 0.8504314

E 0.9137064

G 0.8946008

C 0.909282

D 0.8997412

B 0.8775436

583

$Sigma584

A F E G C D B

A 9.8772266 0.0000000 0.1171813 0.0000000 2.3654513 2.6142280 7.2724966

F 0.0000000 9.7762923 0.0000000 0.3657529 0.0000000 0.0000000 0.0000000

E 0.11718135 0.00000000 9.92553417 0.00000000 0.09593997 0.10603007 0.12950541

G 0.0000000 0.3657529 0.0000000 9.8889100 0.0000000 0.0000000 0.0000000

C 2.36545128 0.00000000 0.09593997 0.00000000 9.91770253 3.23775807 2.61422796

D 2.6142280 0.0000000 0.1060301 0.0000000 3.2377581 9.8994816 2.8891687

B 7.2724966 0.0000000 0.1295054 0.0000000 2.6142280 2.8891687 9.8500442

585

In [243]: getTipDistribution(modelOUter, params, v=TRUE)

*** Computation of tip traits distribution through ODE resolution ***

(Method working for any model)

Computation time : 0.01829243 secs

Out[243]:586

51

$mean

A 0.8891984

F 0.8504309

E 0.9137081

G 0.8946024

C 0.9092837

D 0.8997429

B 0.8775447

587

$Sigma588

A F E G C D B

A 9.8772243 0.0000000 0.1171837 0.0000000 2.3654834 2.6142593 7.2725143

F 0.0000000 9.7762896 0.0000000 0.3657561 0.0000000 0.0000000 0.0000000

E 0.11718371 0.00000000 9.92553239 0.00000000 0.09594306 0.10603262 0.12950776

G 0.0000000 0.3657561 0.0000000 9.8889077 0.0000000 0.0000000 0.0000000

C 2.36548343 0.00000000 0.09594306 0.00000000 9.91769978 3.23780799 2.61425810

D 2.6142593 0.0000000 0.1060326 0.0000000 3.2378080 9.8994793 2.8891973

B 7.2725143 0.0000000 0.1295078 0.0000000 2.6142581 2.8891973 9.8500418

589

In [244]: dataOU <- simulateTipData(modelOU, c(0,0,0.2,1,2))

fitTipData(modelOU, dataOU)

fitTipData(modelOUbis, dataOU)

fitTipData(modelOUter, dataOU)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, but returns only the tip data.

Computation time : 0.2363398 secs

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

52

Computation time : 0.1814284 secs

Out[244]:590

$value 15.0174906724384591

$inferredParams m0 -26.3722559360675592

v0 0.111663973605588593

psi 0.0973609295443122594

theta 14.9673044542728595

sigma 1.12338425846849596

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 0.7557919 secs

Out[244]:597

$value 15.0174906724384598

$inferredParams m0 -26.3722559360675599

v0 0.111663973605588600

psi 0.0973609295443122601

theta 14.9673044542728602

sigma 1.12338425846849603

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

53

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 6.088683 secs

Out[244]:604

$value 15.0174914969285605

$inferredParams m0 -26.3722559360675606

v0 0.111663973605588607

psi 0.0973609295443122608

theta 14.9673044542728609

sigma 1.12338425846849610

Focusing on the computation time, it is quite easily seen how interesting it can be to do611

some more analytical work and write more appropriated getTipDistribution functions. Still,612

the defaut function written for the superclass PhenotypicModel should always work.613

E.3.3 Using the framework to define a new model614

We illustrate here how the current code can be used to numerically study a specific model that615

has not been implemented elsewhere. We focus here on the implementation of the ‘GMM’ model616

described in the main text, explaining step by step the following procedure, that is generalizable617

to any model :618

1. we identify what the periods are,619

2. we write the model in a vectorial form on each period,620

3. we implement it naively first,621

54

4. we make analytical developments to speed up the computation time, and subsequently622

introduce a new class more appropriated to this model.623

For simplicity, we implement GMM for two ultrametric trees here. In our example, the624

two trees will be :625

In [245]: newick1 <- "(((A:1,B:1):3,(C:3,D:3):1):2,E:6);"

tree1 <- read.tree(text=newick1)

plot(tree1)

newick2 <- "((X:1.5,Y:1.5):3,Z:4.5);"

tree2 <- read.tree(text=newick2)

plot(tree2)

626

55

627

The first step consists in implementing a function endOfPeriodsGMM(tree1, tree2),628

which takes as input two trees (the trees corresponding to our two interacting clades), and629

returns :630

• the list of successive branching times (τi) (vector periods),631

• information on which branch gives birth at that time (vector copy),632

• the number assigned to the newly created branch at that time (vector paste),633

• the number of lineages in clade 1 and 2 at each time (vectors nLineages1 and nLineages2),634

• the label of tips at the end (vector labeling).635

For example, our function, called on the two preceding trees, returns :636

In [246]: endOfPeriodsGMM(tree1, tree2)

Out[246]:637

$periods 0 1.5 2 3 4.5 5 6638

$copy 1 3 1 3 5 1 0639

56

$paste 2 4 3 4 7 5 0640

$nLineages1 2 2 3 4 4 5 0641

$nLineages2 1 2 2 2 3 3 0642

$labeling ’A’ ’E’ ’C’ ’D’ ’B’ ’X’ ’Z’ ’Y’643

The second step now consists in writing the model in the vectorial form required in the644

framework, during each epoch i. The form of the a, A and Γ matrices is shown in Online645

Appendix C.4, and depends on the number of lineages in the two clades during each epoch.646

We introduce the constructor createModelCoevolution(tree1, tree2), which is a647

function that takes as input two ultrametric trees corresponding to the two clades, and returns648

an object of class PhenotypicModel. It relies on the central function aAGamma that defines the649

collection of (ai, Ai,Γi) during each epoch.650

This first version of the GMM implementation allows us to simulate tip data, to get the651

tip distribution under any parameter set, and to fit tip data.652

In [248]: modelGMMbis <- createModelCoevolution(tree1, tree2, keyword="GMMbis")

modelGMMbis

Out[248]:

**

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "GMMbis"

*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"

*** Description : Generalist Matching Mutualism model.

Starts with 3 or 4 lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving then non-independtly

according to the GMM expression.

*** Periods : the model is cut into 7 parts.

For more details on the model, call : print(PhenotypicModel)

**

57

In [249]: dataGMM <- simulateTipData(modelGMMbis, c(0,0,5,-5, 1, 1), method=2)

*** Simulation of tip trait values ***

Simulates step-by-step the whole trajectory, plots it, and returns tip data.

Computation time : 0.319762 secs

653

In [250]: getTipDistribution(modelGMMbis, c(0,0,5,-5,0.5,1))

Out[250]:654

$mean

A 2.493801

E 2.493801

C 2.493801

D 2.493801

B 2.493801

X -2.493801

Z -2.493801

Y -2.493801

655

58

$Sigma

A E C D B X Z Y

A 2.196011 1.171214 1.215844 1.215844 1.563892 1.399735 1.341619 1.399735

E 1.171214 2.141458 1.172730 1.172730 1.171214 1.337713 1.279597 1.337713

C 1.215844 1.172730 2.199045 1.248832 1.215844 1.379237 1.321122 1.379237

D 1.215844 1.172730 1.248832 2.199045 1.215844 1.379237 1.321122 1.379237

B 1.563892 1.171214 1.215844 1.215844 2.196011 1.399735 1.341619 1.399735

X 1.399735 1.337713 1.379237 1.379237 1.399735 2.200083 1.190366 1.423215

Z 1.341619 1.279597 1.321122 1.321122 1.341619 1.190366 2.158430 1.190366

Y 1.399735 1.337713 1.379237 1.379237 1.399735 1.423215 1.190366 2.200083

656

In [251]: fitTipData(modelGMMbis, dataGMM, c(0,0,5,-5,1,1))

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,

returns the likelihood and the inferred parameters.

WARNING : This function uses the standard R optimizer "optim".

It may not always converge well.

Please double check the convergence by trying

distinct parameter sets for the initialisation.

Computation time : 3.728739 secs

Out[251]:657

$value 6.61385667009296658

$inferredParams m0 0.00512480151380221659

v0 2.69680996514239e-05660

d1 5.03536962882004661

d2 -5.83517142115953662

S 0.231631941480316663

sigma 0.361942471141108664

59

However, this first implementation relies on the PhenotypicModel class, which uses the665

method getTipDistribution that solves the ODE system through each epoch, and thus takes666

time.667

The analytical reduction presented in Online Appendix C.4 can also be implemented. To668

this end, we create a new class named PhenotypicGMM, associated with an other function669

getTipDistribution. Using these developments allows us to compute more rapidly the tip670

distribution under the model.671

In [252]: modelGMM <- createModelCoevolution(tree1, tree2, keyword="GMM")

modelGMM

Out[252]:

**

*** Object of Class PhenotypicModel ***

*** Name of the model : [1] "GMM"

*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"

*** Description : Generalist Matching Mutualism model.

Starts with 3 or 4 lineages having the same value X_0 ~ Normal(m0,v0).

One trait in each lineage, all lineages evolving then non-independtly

according to the GMM expression.

*** Periods : the model is cut into 7 parts.

For more details on the model, call : print(PhenotypicModel)

**

In [253]: getTipDistribution(modelGMM, c(0,0,5,-5,0.5,1), v=TRUE)

getTipDistribution(modelGMMbis, c(0,0,5,-5,0.5,1), v=TRUE)

*** Analytical computation of tip traits distribution ***

(Method working for the GMM model only)

Computation time : 0.0008528233 secs

Out[253]:672

60

$mean

A 2.493803

E 2.493803

C 2.493803

D 2.493803

B 2.493803

X -2.493803

Z -2.493803

Y -2.493803

673

$Sigma

A E C D B X Z Y

A 2.196010 1.171213 1.215843 1.215843 1.563890 1.399736 1.341620 1.399736

E 1.171213 2.141459 1.172730 1.172730 1.171213 1.337713 1.279597 1.337713

C 1.215843 1.172730 2.199045 1.248832 1.215843 1.379238 1.321122 1.379238

D 1.215843 1.172730 1.248832 2.199045 1.215843 1.379238 1.321122 1.379238

B 1.563890 1.171213 1.215843 1.215843 2.196010 1.399736 1.341620 1.399736

X 1.399736 1.337713 1.379238 1.379238 1.399736 2.200083 1.190366 1.423213

Z 1.341620 1.279597 1.321122 1.321122 1.341620 1.190366 2.158430 1.190366

Y 1.399736 1.337713 1.379238 1.379238 1.399736 1.423213 1.190366 2.200083

674

*** Computation of tip traits distribution through ODE resolution ***

(Method working for any model)

Computation time : 0.01734638 secs

Out[253]:675

$mean

A 2.493801

E 2.493801

C 2.493801

D 2.493801

B 2.493801

X -2.493801

Z -2.493801

Y -2.493801

676

61

$Sigma

A E C D B X Z Y

A 2.196011 1.171214 1.215844 1.215844 1.563892 1.399735 1.341619 1.399735

E 1.171214 2.141458 1.172730 1.172730 1.171214 1.337713 1.279597 1.337713

C 1.215844 1.172730 2.199045 1.248832 1.215844 1.379237 1.321122 1.379237

D 1.215844 1.172730 1.248832 2.199045 1.215844 1.379237 1.321122 1.379237

B 1.563892 1.171214 1.215844 1.215844 2.196011 1.399735 1.341619 1.399735

X 1.399735 1.337713 1.379237 1.379237 1.399735 2.200083 1.190366 1.423215

Z 1.341619 1.279597 1.321122 1.321122 1.341619 1.190366 2.158430 1.190366

Y 1.399735 1.337713 1.379237 1.379237 1.399735 1.423215 1.190366 2.200083

677

62

