Online Appendix A unifying comparative phylogenetic framework including traits coevolving across interacting lineages

Marc Manceau ${ }^{1,3,4}$, Amaury Lambert ${ }^{2,3}$, Hélène Morlon ${ }^{4}$
${ }^{1}$ Muséum National d'Histoire Naturelle, 75005 Paris, France;
${ }^{2}$ Laboratoire Probabilités et Modèles Aléatoires, UPMC Univ Paris 06, 75005 Paris, France;
${ }^{3}$ Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, 75005 Paris, France;
${ }^{4}$ Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, 75005 Paris, France

Content.- We provide here the full, uncut, Online Appendix to our paper entitled "A unifying comparative phylogenetic framework including traits coevolving across interacting lineages". The first section is exposed in the attached appendix of the paper, but we let it here for the sake of self-containment. Note that simple equation numbering (e.g. equation (5)) refers to equations printed in the main text, whereas equations exposed in this appendix are designated as, e.g. equation (S5).

Contents

A Derivation of the distribution in a general setting

B Distribution for some models without interactions between lineages

C Distribution for some models with interactions between lineages

D Simulation and Inference

E Tutorial : using the RPANDA code to study trait coevolution

A Derivation of the distribution in a general setting

A. 1 The distribution of trait values is Gaussian

Recall that a vector is Gaussian if all linear combination of its components follows a normal distribution. We will thus show by induction that all linear combinations of the traits follow a normal distribution.

The process of trait evolution starts either at the stem root with a vector of size d defined by the initial conditions $X_{\tau_{0}}={ }^{\operatorname{tr}}\left(X_{0}^{1}, \ldots X_{0}^{d}\right)$, or at the crown root with a vector of size $2 d$ defined by the initial conditions : $X_{\tau_{0}}={ }^{\operatorname{tr}}\left(X_{0}^{1}, \ldots X_{0}^{d}, X_{0}^{1} \ldots, X_{0}^{d}\right)$, or at any other step, provided the initial conditions are Gaussian by assumption.

Now, assume that $X_{\tau_{i}}$ is a Gaussian vector.
Then, $\forall t \in\left(\tau_{i}, \tau_{i+1}\right)$, after integration we have the following closed expression for the value of the process X_{t}.

$$
\begin{equation*}
X_{t}=e^{-t A_{i}}\left(e^{\tau_{i} A_{i}} X_{\tau_{i}}+\int_{\tau_{i}}^{t} e^{s A_{i}} a_{i}(s) d s+\int_{\tau_{i}}^{t} e^{s A_{i}} \Gamma_{i}(s) d W_{s}\right) \tag{S1}
\end{equation*}
$$

Moreover, we have, for any deterministic function Φ (Gardiner et al. 1985),

$$
\int_{t_{n}}^{t} \Phi_{s} d W_{s} \sim \mathcal{N}\left(0, \int_{t_{n}}^{t} \Phi_{s}{ }^{t r} \Phi_{s} d s\right)
$$

Hence, X_{t} is a linear combination of Gaussian vectors, which makes it a Gaussian vector. Last, suppose that at time τ_{i+1}, the j th branch splits, in which case the vector grows. All linear combinations of the components of X_{t} at time τ_{i+1}^{-}have a normal distribution. And the d additional components added at time τ_{i+1} belong to the components at time τ_{i+1}^{-}. It follows that all linear combinations of the new vector still have a normal distribution.

A.2 Integrating the evolution of the distribution through each epoch

Still assuming that we know the (Gaussian) distribution of $X_{\tau_{i}}$ at the beginning of an epoch $\left(\tau_{i}, \tau_{i+1}\right)$, a few more lines allow us to provide a closed formula for the distribution of X_{t} at all
time $t \in\left(\tau_{i}, \tau_{i+1}\right)$. Indeed, using Equation (S1), and the fact that, if X and Y are two independent Gaussian vectors with expectation vectors respectively m_{X} and m_{Y} and covariance matrices respectively Σ_{X} and Σ_{Y}, then :

$$
\begin{aligned}
D X+d & \sim \mathcal{N}\left(D m_{X}+d, D \Sigma_{X}{ }^{t r} D\right) \\
X+Y & \sim \mathcal{N}\left(m_{X}+m_{Y}, \Sigma_{X}+\Sigma_{Y}\right)
\end{aligned}
$$

It thus follows that, $\forall t \in\left[\tau_{i}, \tau_{i+1}\right]$,

$$
\begin{align*}
& m_{t}=e^{\left(\tau_{i}-t\right) A_{i}} m_{\tau_{i}}+\int_{\tau_{i}}^{t} e^{(s-t) A_{i}} a_{i}(s) d s \tag{4a}\\
& \Sigma_{t}=\left(e^{\left(\tau_{i}-t\right) A_{i}}\right) \Sigma_{\tau_{i}}^{t r}\left(e^{\left(\tau_{i}-t\right) A_{i}}\right)+\int_{\tau_{i}}^{t}\left(e^{(s-t) A_{i}} \Gamma_{i}(s)\right)^{t r}\left(e^{(s-t) A_{i}} \Gamma_{i}(s)\right) d s \tag{4b}
\end{align*}
$$

Applying these equations for $t=\tau_{i+1}$ thus gives the distribution of the trait vector at time τ_{i+1}, which is the result stated in Equations (4a, 4b) in the main text.

Remark that, unless one of the very first branches immediately dies at the beginning of the process at a fixed initial condition, the density of the tip distribution has support in $\mathbb{R}^{n d}$. One can check that Σ_{t} stays positive definite (implying that det $\Sigma_{t} \neq 0$), even when some Γ_{i} are not positive definite (except the first one).

A. 3 Evolution of the distribution through ODE resolution

The expectation and covariance formulae provided in Equations (4a, 4b) require to deal with an integral which is not always straightforward to compute. Alternatively, one can prefer to take the derivative of this expression, get a set of ODEs verified by the expectation and covariance elements through each epoch, and subsequently integrate the ODE system. We show now another way to derive this set of ODEs.

First, we write the stochastic differential equation on any epoch $\left(\tau_{i}, \tau_{i+1}\right)$ and for each trait k, which is given in the most general setting by :

$$
d X_{t}^{(k)}=\left(a_{i}^{(k)}(t)-\sum_{m=1}^{n_{t} d} A_{i}^{(k, m)} X_{t}^{(m)}\right) d t+\sum_{m=1}^{n_{t} d} \Gamma_{i}^{(k, m)}(t) d W_{t}^{(m)}
$$

Itô's formula (Gardiner et al. 1985) then gives us :

$$
\begin{aligned}
d\left(X_{t}^{(k)} X_{t}^{(l)}\right) & =X_{t}^{(k)} d X_{t}^{(l)}+X_{t}^{(l)} d X_{t}^{(k)}+d<X_{t}^{(k)}, X_{t}^{(l)}> \\
& =\left(a_{i}^{(l)}(t) X_{t}^{(k)}-\sum_{m=1}^{n_{t} d} A_{i}^{(l, m)} X_{t}^{(m)} X_{t}^{(k)}\right) d t+\sum_{m=1}^{n_{t} d} \Gamma_{i}^{(l, m)}(t) X_{t}^{(k)} d W_{t}^{(m)} \\
& +\left(a_{i}^{(k)}(t) X_{t}^{(l)}-\sum_{m=1}^{n_{t} d} A_{i}^{(k, m)} X_{t}^{(m)} X_{t}^{(l)}\right) d t+\sum_{m=1}^{n_{t} d} \Gamma_{i}^{(k, m)}(t) X_{t}^{(l)} d W_{t}^{(m)} \\
& +\sum_{m=1}^{n_{t} d} \Gamma_{i}^{(l, m)}(t) \Gamma_{i}^{(k, m)}(t) d t
\end{aligned}
$$

Taking the expectation, it follows that

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left(X_{t}^{(k)} X_{t}^{(l)}\right) & =a^{(l)}(t) \mathbb{E}\left(X_{t}^{(k)}\right)+a_{i}^{(k)}(t) \mathbb{E}\left(X_{t}^{(l)}\right) \\
& -\sum_{m=1}^{n_{t} d} A_{i}^{(l, m)} \mathbb{E}\left(X_{t}^{(m)} X_{t}^{(k)}\right)-\sum_{m=1}^{n_{t} d} A_{i}^{(k, m)} \mathbb{E}\left(X_{t}^{(m)} X_{t}^{(l)}\right) \\
& +\sum_{m=1}^{n_{t} d} \Gamma_{i}^{(l, m)}(t) \Gamma_{i}^{(k, m)}(t)
\end{aligned}
$$

In the same fashion, we get

$$
\begin{equation*}
\frac{d}{d t} \mathbb{E}\left(X_{t}^{(k)}\right)=a_{i}^{(k)}(t)-\sum_{m=1}^{n_{t} d} A_{i}^{(k, m)} \mathbb{E}\left(X_{t}^{(m)}\right) \tag{5a}
\end{equation*}
$$

This leads to

$$
\begin{aligned}
\frac{d}{d t}\left(\mathbb{E}\left(X_{t}^{(k)}\right) \mathbb{E}\left(X_{t}^{(l)}\right)\right) & =\mathbb{E}\left(X_{t}^{(l)}\right) \frac{d}{d t} \mathbb{E}\left(X_{t}^{(k)}\right)+\mathbb{E}\left(X_{t}^{(k)}\right) \frac{d}{d t} \mathbb{E}\left(X_{t}^{(l)}\right) \\
& =a_{i}^{(k)}(t) \mathbb{E}\left(X_{t}^{(l)}\right)-\sum_{m=1}^{n_{t} d} A_{i}^{(k, m)} \mathbb{E}\left(X_{t}^{(m)}\right) \mathbb{E}\left(X_{t}^{(l)}\right) \\
& +a_{i}^{(l)}(t) \mathbb{E}\left(X_{t}^{(k)}\right)-\sum_{m=1}^{n_{t} d} A_{i}^{(l, m)} \mathbb{E}\left(X_{t}^{(m)}\right) \mathbb{E}\left(X_{t}^{(k)}\right)
\end{aligned}
$$

Putting together these different parts gives us the ODE satisfied by all covariances :

$$
\begin{align*}
\frac{d}{d t} \operatorname{Cov}\left(X_{t}^{(k)}, X_{t}^{(l)}\right) & =\frac{d}{d t}\left(\mathbb{E}\left(X_{t}^{(k)} X_{t}^{(l)}\right)-\mathbb{E}\left(X_{t}^{(k)}\right) \mathbb{E}\left(X_{t}^{(l)}\right)\right) \\
& =-\sum_{m=1}^{n_{t} d}\left[A_{i}^{(k, m)} \operatorname{Cov}\left(X_{t}^{(m)}, X_{t}^{(l)}\right)+A_{i}^{(l, m)} \operatorname{Cov}\left(X_{t}^{(m)}, X_{t}^{(k)}\right)-\Gamma_{i}^{(l, m)}(t) \Gamma_{i}^{(k, m)}(t)\right] \tag{5b}
\end{align*}
$$

${ }_{67} \Sigma$, these sets of ODEs can be written equivalently as follows

$$
\begin{align*}
\frac{d m_{t}}{d t} & =a_{i}(t)-A_{i} m_{t} \tag{S2}\\
\frac{d \Sigma_{t}}{d t} & =-A_{i} \Sigma_{t}-{ }^{t r} \Sigma_{t}^{t r} A_{i}+\Gamma_{i}{ }^{t r} \Gamma_{i} \tag{S3}
\end{align*}
$$

B Distribution for some models Without interactions BETWEEN LINEAGES

B. 1 Distribution of classic univariate models

We present in this section how previously known results of analytic tip distribution of univariate models fit in, and can be rediscovered with, our framework. Results are summarized in Table S1. The scheme is identical for each model :

1. Reduce Equations (4a, 4b) or (5a, 5b) according to the model.
2. Look for an analytical solution at any time τ_{i}, by calculating manually the expectations and covariances at $\tau_{1}, \tau_{2}, \tau_{3}, \ldots$
3. Prove by induction that the analytical solution holds at any time τ_{i}.

We call $t_{k, l}$ the time of the most recent common ancestor to lineages k and l, and $t_{k, k}$ the death time of lineage k, equal to T if it survives until present (see Fig. S1). We further note $1_{k \text { alive }}(t)$ the quantity that equals one if lineage k is alive at time t and zero otherwise, and $1_{k=l}$ that equals one if $k=l$ and zero otherwise. Last, $t_{1} \wedge t_{2}$ stands for the minimum of the two values t_{1} and t_{2}.

The unity vector (vector full of 1) is denoted by V, I refers to the identity matrix (diagonal matrix with diagonal values equal to 1), and U refers to the unity matrix (matrix full of 1). Their size is the same as the size of the vector of traits X_{t} considered. Considering non-ultrametric trees including fossils amounts to replacing vector V and matrices I and U by their homologs $V_{\text {alive }}, I_{\text {alive }}$ and $U_{\text {alive }}$, where the subscript specifies that the vector and matrices have 0 on lines and columns corresponding to lineages that are extinct in the given epoch.

B.1.1 Brownian Motion (BM)

We show how to get the well-known expression of the distribution of a trait evolving under BM, on non-necessarily ultrametric trees. We take $a=b V_{\text {alive }}, A=0$ and $\Gamma=\sigma I_{\text {alive }}$, i.e. the process

Code	m_{0}	Σ_{0}	$\left(m_{T}\right)^{(k)}$	$\left(\Sigma_{T}\right)^{(k, l)}$
BM	m_{0}	v_{0}	$m_{0}+b t_{k, k}$	$v_{0}+\sigma^{2} t_{k, l}$
OU	θ	0	θ	$\frac{\sigma^{2}}{2 \psi} e^{-\psi\left(t_{k, k}+t_{l, l}-2 t_{k, l}\right)}\left(1-e^{-2 \psi t_{k, l}}\right)$
OU	θ	$\frac{\sigma^{2}}{2 \psi}$	θ	$\frac{\sigma^{2}}{2 \psi} e^{-\psi\left(t_{k, k}+t_{l, l}-2 t_{k, l}\right)}$
ACDC	m_{0}	v_{0}	m_{0}	$v_{0}+\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r t_{k, l}}-1\right)$
DD	m_{0}	v_{0}	m_{0}	$v_{0}+\sigma_{0}^{2} \sum_{j=0}^{N-1} e^{2 r n_{\tau_{j}}}\left(\tau_{j+1}-\tau_{j}\right) 1_{t_{k, l}>\tau_{j}}$

TABLE S1: Analytic tip distribution for models without interactions between traits or lineages. We recall that $t_{k, l}$ is the absolute time of the most recent common ancestor to lineages k and l, and $t_{k, k}$ is the death time of lineage k, equal to T if it survives until present.

Figure S1: Formalism used in analytic formulae presented in Table S1.
follows the equation :

$$
d X_{t}=b V_{\text {alive }} d t+\sigma I_{\text {alive }} d W_{t}
$$

Equations (4a) and (4b) lead to the following recurrence formulae driving the law of X_{t} through each epoch $\left[\tau_{i}, \tau_{i+1}\right)$:

$$
\begin{aligned}
& \mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(X_{\tau_{i}}\right)+b\left(t-\tau_{i}\right) V_{\text {alive }} \\
& \operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(X_{\tau_{i}}\right)+\sigma^{2}\left(t-\tau_{i}\right) I_{\text {alive }}
\end{aligned}
$$

Alternatively, Equations (5a) and (5b) lead to the following recurrence formulae driving the law of X_{t} through each epoch $\left[\tau_{i}, \tau_{i+1}\right)$:

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left(X_{t}^{(k)}\right)=b 1_{\mathrm{k} \text { alive }}(t) \\
& \frac{d}{d t} \operatorname{Cov}\left(X_{t}^{(k)}, X_{t}^{(l)}\right)=\sigma^{2} 1_{k=l} 1_{\mathrm{k} \text { alive }}(t)
\end{aligned}
$$

We can show by induction on i that for any i the expectation and covariance matrix at time τ_{i} are such that, for any (k, l) :

$$
\begin{align*}
& \mathbb{E}\left(X_{\tau_{i}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right)+b\left(t_{k, k} \wedge \tau_{i}\right) \tag{S4}\\
& \operatorname{Cov}\left(X_{\tau_{i}}^{(k)}, X_{\tau_{i}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma^{2}\left(t_{k, l} \wedge \tau_{i}\right) \tag{S5}
\end{align*}
$$

Indeed, we verify Equations (S4, S5) at step $i=1$.
Now, suppose Equations (S4, S5) hold at step n. Using either Equations (4a, 4b) or (5a, 5b), we get :

$$
\begin{aligned}
& \mathbb{E}\left(X_{\tau_{n+1}^{-}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right)+b\left(t_{k, k} \wedge \tau_{n+1}\right) \\
& \operatorname{Cov}\left(X_{\tau_{n+1}^{-}}^{(k)}, X_{\tau_{n+1}^{-}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma^{2}\left(t_{k, l} \wedge \tau_{n+1}\right)
\end{aligned}
$$

If τ_{n+1} is a death time of a lineage, Equations (S4, S5) are verified at step $n+1$.
If τ_{n+1} is a branching time, we verify that the new lineage inherits the expectation and covariances of its mother, as well as the same coalescence times with other lineages. It also follows that Equations (S4, S5) are verified at step $n+1$.

Finally, by induction, we get the tip distribution :

$$
\begin{aligned}
& \mathbb{E}\left(X_{T}^{(k)}\right)=\mathbb{E}\left(X_{0}\right)+b t_{k, k} \\
& \operatorname{Cov}\left(X_{T}^{(k)}, X_{T}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma^{2} t_{k, l}
\end{aligned}
$$

B.1.2 Ornstein-Uhlenbeck (OU)

We can get another well-known distribution for a trait evolving under an Ornstein-Uhlenbeck process on a tree. We take $a=\psi \theta V_{\text {alive }}, A=\psi I_{\text {alive }}$ and $\Gamma=\sigma I_{\text {alive }}$, i.e. the process follows the equation :

$$
d X_{t}=\left(\psi \theta V_{\text {alive }}-\psi I_{\text {alive }} X_{t}\right) d t+\sigma I_{\text {alive }} d W_{t}
$$

Expressions (4a) and (4b) simplify into the following recurrence formulae :

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =e^{-\psi\left(t-\tau_{i}\right) I_{\text {alive }}}\left(\mathbb{E}\left(X_{\tau_{i}}\right)-\theta V_{\text {alive }}\right)+\theta V_{\text {alive }} \\
\operatorname{Var}\left(X_{t}\right) & =e^{-2 \psi\left(t-\tau_{i}\right) I_{\text {alive }}}\left(\operatorname{Var}\left(X_{\tau_{i}}\right)-\frac{\sigma^{2}}{2 \psi} I_{\text {alive }}\right)+\frac{\sigma^{2}}{2 \psi} I_{\text {alive }}
\end{aligned}
$$

Alternatively, here again, one can prefer to apply Equations (5a) and (5b) :

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left(X_{t}^{(k)}\right)=\psi 1_{k \text { alive }}(t)\left(\theta-\mathbb{E}\left(X_{t}^{(k)}\right)\right) \\
& \frac{d}{d t} \operatorname{Cov}\left(X_{t}^{(k)}, X_{t}^{(l)}\right)=-\psi\left(1_{k \text { alive }}(t)+1_{l \text { alive }}(t)\right) \operatorname{Cov}\left(X_{t}^{(k)}, X_{t}^{(l)}\right)+\sigma^{2} 1_{k=l}
\end{aligned}
$$

We can show by induction that for any epoch i, the expectation and covariance matrix at time τ_{i} are such that, for all (k, l) :

$$
\begin{align*}
& \mathbb{E}\left(X_{\tau_{i}}^{(k)}\right)=\theta+e^{-\psi\left(t_{k, k} \wedge \tau_{i}\right)}\left(\mathbb{E}\left(X_{0}\right)-\theta\right) \tag{S6}\\
& \operatorname{Cov}\left(X_{\tau_{i}}^{(k)}, X_{\tau_{i}}^{(l)}\right)=e^{-\psi\left(t_{k, k} \wedge \tau_{i}+t_{l, l} \wedge \tau_{i}-2\left(t_{k, l} \wedge \tau_{i}\right)\right)}\left[\frac{\sigma^{2}}{2 \psi}+e^{-2 \psi\left(t_{k, l} \wedge \tau_{i}\right)}\left(\operatorname{Var}\left(X_{0}\right)-\frac{\sigma^{2}}{2 \psi}\right)\right] \tag{S7}
\end{align*}
$$

Indeed, we verify Equations (S6, S7) at step $i=0$.
Now, suppose Equations (S6, S7) hold at step n. Using either Equations (4a, 4b) or (5a, 5b), we get :

$$
\begin{aligned}
& \mathbb{E}\left(X_{\tau_{n+1}^{-}}^{(k)}\right)=\theta+e^{-\psi\left(t_{k, k} \wedge \tau_{n+1}\right)}\left(\mathbb{E}\left(X_{0}\right)-\theta\right) \\
& \operatorname{Cov}\left(X_{\tau_{n+1}^{-}}^{(k)}, X_{\tau_{n+1}^{-}}^{(l)}\right)=e^{-\psi\left(t_{k, k} \wedge \tau_{n+1}+t_{l, l} \wedge \tau_{n+1}-2\left(t_{k, l} \wedge \tau_{n+1}\right)\right)}\left[\frac{\sigma^{2}}{2 \psi}+e^{-2 \psi\left(t_{k, l} \wedge \tau_{n+1}\right)}\left(\operatorname{Var}\left(X_{0}\right)-\frac{\sigma^{2}}{2 \psi}\right)\right]
\end{aligned}
$$

If τ_{n+1} is a death time of a lineage, Equations (S6, S7) are verified at step $n+1$.
If τ_{n+1} is a branching time, we verify that the new lineage inherits the expectation and covariances of its mother, as well as the same coalescence times with other lineages. It also follows that Equations $(\mathrm{S} 6, \mathrm{~S} 7)$ are verified at step $n+1$.

Finally, by induction, we get the tip distribution :

$$
\begin{aligned}
& \mathbb{E}\left(X_{T}^{(k)}\right)=\theta+e^{-\psi t_{k, k}}\left(\mathbb{E}\left(X_{0}\right)-\theta\right) \\
& \operatorname{Cov}\left(X_{T}^{(k)}, X_{T}^{(l)}\right)=e^{-\psi\left(t_{k, k}+t_{l, l}-2 t_{k, l}\right)}\left[\frac{\sigma^{2}}{2 \psi}+e^{-2 \psi t_{k, l}}\left(\operatorname{Var}\left(X_{0}\right)-\frac{\sigma^{2}}{2 \psi}\right)\right]
\end{aligned}
$$

Two classes of initial distributions are typically considered in the literature :

1. If we consider a process starting at $X_{0}=\theta$ (i.e. with $\mathbb{E}\left(X_{0}\right)=\theta$ and $\left.\operatorname{Var}\left(X_{0}\right)=0\right)$, we get the following expectation vector m_{T} and covariance matrix Σ_{T} at the tips :

$$
\begin{aligned}
& m_{T}={ }^{\operatorname{tr}}(\theta, \theta, \ldots, \theta) \quad \text { and } \quad \Sigma_{T}=\frac{\sigma^{2}}{2 \psi} \Upsilon_{1} \\
& \text { where } \Upsilon_{1}=\left[e^{-\psi\left(t_{k, k}+t_{l, l}-2 t_{k, l}\right)}\left(1-e^{-2 \psi t_{k, l}}\right)\right]_{1 \leq k, l \leq K}
\end{aligned}
$$

2. When $\psi>0$, if we consider a process starting under its stationary distribution (i.e. $\mathbb{E}\left(X_{0}\right)=\theta$ and $\left.\operatorname{Var}\left(X_{0}\right)=\frac{\sigma^{2}}{2 \psi}\right)$, it simplifies into the following expectation vector and covariance matrix :

$$
\begin{aligned}
& m_{T}={ }^{\operatorname{tr}}(\theta, \theta, \ldots, \theta) \quad \text { and } \quad \Sigma_{T}=\frac{\sigma^{2}}{2 \psi} \Upsilon_{2} \\
& \text { where } \Upsilon_{2}=\left[e^{-\psi\left(t_{k, k}+t_{l, l}-2 t_{k, l}\right)}\right]_{1 \leq k, l \leq K}
\end{aligned}
$$

B.1.3 ACDC (accelerating or decelerating rate)

In the ACDC process, the rate of phenotypic evolution varies exponentially through time, with $a=0, A=0$ and $\Gamma=\sigma_{0} e^{r t} I_{\text {alive }}$ (here, $r>0$). The process follows the equation :

$$
d X_{t}=\sigma_{0} e^{r t} I_{\text {alive }} d W_{t}
$$

Here again, we can simplify Equations (4a, 4b) or (5a, 5b). With Equations (4a, 4b), we get the following recurrence formulae driving the law of X_{t} through each epoch $\left(\tau_{i}, \tau_{i+1}\right)$:

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =\mathbb{E}\left(X_{\tau_{i}}\right) \\
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(X_{\tau_{i}}\right)+\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r t}-e^{2 r \tau_{i}}\right) I_{\text {alive }} d t
\end{aligned}
$$

We can show by induction that for any i, the expectation and covariance matrix at time τ_{i} are such that, for any (k, l) :

$$
\begin{align*}
& \mathbb{E}\left(X_{\tau_{i}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \tag{S8}\\
& \operatorname{Cov}\left(X_{\tau_{i}}^{(k)}, X_{\tau_{i}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r\left(t_{k}, l \wedge \tau_{i}\right)}-1\right) \tag{S9}
\end{align*}
$$

Indeed, we verify Equations (S8, S9) at step $i=0$.
Now, suppose Equations (S8, S9) hold at step n. Using either Equations (4a, 4b) or (5a, 5b), we get :

$$
\begin{aligned}
& \mathbb{E}\left(X_{\tau_{n+1}^{-}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \\
& \operatorname{Cov}\left(X_{\tau_{n+1}^{-}}^{(k)}, X_{\tau_{n+1}^{-}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r\left(t_{k, l} \wedge \tau_{n+1}\right)}-1\right)
\end{aligned}
$$

If τ_{n+1} is a death time of a lineage, Equations (S8, S9) are verified at step $n+1$.
If τ_{n+1} is a branching time, we verify that the new lineage inherits the expectation and covariances of its mother, as well as the same coalescence times with other lineages. It also follows that Equations (S8, S9) are verified at step $n+1$.

Finally, by induction, we get the tip distribution :

$$
\begin{aligned}
& \mathbb{E}\left(X_{T}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \\
& \operatorname{Cov}\left(X_{T}^{(k)}, X_{T}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r t_{k, k}}-1\right)
\end{aligned}
$$

B.1.4 ACDC and OU processes lead to the same present-time distributions on ultrametric trees

This has been shown previously in Uyeda et al. 2015. More precisely, OU is equivalent to a model with accelerating rates at present, and only on ultrametric phylogenies.

Looking at expressions of expectations and covariance matrices under ACDC and OU with initial conditions $X_{0}=\theta$, we see that we can choose parameters such that we get the exact same distribution. First take $\mathbb{E}\left(X_{0}\right)=\theta$: the two expectation vectors are identical. Moreover, we can choose parameters such that the covariance matrices are equal :

$$
\begin{aligned}
& \frac{\sigma^{2}}{2 \psi} e^{-2 \psi\left(T-t_{k, l}\right)}\left(1-e^{-2 \psi t_{k, l}}\right)=\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r t_{k, l}}-1\right) \\
\Longleftrightarrow & \frac{\sigma^{2}}{2 \psi} e^{-2 \psi T}\left(e^{2 \psi t_{k, l}}-1\right)=\frac{\sigma_{0}^{2}}{2 r}\left(e^{2 r t_{k, l}}-1\right) \\
\Longleftrightarrow & r=\psi \text { and } \sigma_{0}^{2}=\sigma^{2} e^{-2 \psi T}
\end{aligned}
$$

Note that this no longer holds on non-ultrametric trees, neither with different initial conditions on the OU.

B.1.5 Diversity-Dependent (DD)

In the DD process, the rate of phenotypic evolution is fixed at the base of the tree and varies exponentially with the number of lineages in the reconstructed phylogeny, with $a=0, A=0$ and $B(t)=\sigma_{0} e^{r n_{t}} I_{\text {alive }}$. The process follows the equation :

$$
d X_{t}=\sigma_{0} e^{r n_{t}} I_{\text {alive }} d W_{t}
$$

Equations (4a, 4b) lead to the following recurrence formulae driving the law of X_{t} through each epoch $\left(\tau_{i}, \tau_{i+1}\right)$:

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =\mathbb{E}\left(X_{\tau_{i}}\right) \\
\operatorname{Var}\left(X_{t}\right) & =\operatorname{Var}\left(X_{\tau_{i}}\right)+\sigma_{0}^{2} e^{2 r n_{\tau_{i}}}\left(t-\tau_{i}\right) I_{\text {alive }}
\end{aligned}
$$

Note that, alternatively, one can again prefer to apply Equations (5a, 5b).
We can then show by induction that for any i, the expectation and covariance matrix at time τ_{i} are such that, for any (k, l) :

$$
\begin{align*}
& \mathbb{E}\left(X_{\tau_{i}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \tag{S10}\\
& \operatorname{Cov}\left(X_{\tau_{i}}^{(k)}, X_{\tau_{i}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma_{0}^{2} \sum_{j=0}^{i-1} e^{2 r n_{\tau_{j}}}\left(\tau_{j+1}-\tau_{j}\right) 1_{t_{k, l}>\tau_{j}} \tag{S11}
\end{align*}
$$

Indeed, we verify Equations (S10, S11) at step $i=0$.
Now, suppose Equations (S10, S11) hold at step n. Using either Equations (4a, 4b) or (5a, 5b), we get :

$$
\begin{aligned}
& \mathbb{E}\left(X_{\tau_{n+1}^{-}}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \\
& \operatorname{Cov}\left(X_{\tau_{n+1}^{-}}^{(k)}, X_{\tau_{n+1}^{-}}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma_{0}^{2} \sum_{j=0}^{n} e^{2 r n_{\tau_{j}}}\left(\tau_{j+1}-\tau_{j}\right) 1_{t_{k, l}>\tau_{j}}
\end{aligned}
$$

If τ_{n+1} is a death time of a lineage, Equations (S10, S11) are verified at step $n+1$.
If τ_{n+1} is a branching time, we verify that the new lineage inherits the expectation and covariances of its mother, as well as the same coalescence times with other lineages. It also follows that Equations (S10, S11) are verified at step $n+1$.

Finally, by induction, we get the tip distribution at present time $\tau_{N}=T$:

$$
\begin{aligned}
& \mathbb{E}\left(X_{T}^{(k)}\right)=\mathbb{E}\left(X_{0}\right) \\
& \operatorname{Cov}\left(X_{T}^{(k)}, X_{T}^{(l)}\right)=\operatorname{Var}\left(X_{0}\right)+\sigma_{0}^{2} \sum_{j=0}^{N-1} e^{2 r n_{\tau_{j}}}\left(\tau_{j+1}-\tau_{j}\right) 1_{t_{k, l}>\tau_{j}}
\end{aligned}
$$

B. 2 Distribution of classic multivariate models

The same methodology applies to classic multivariate models that incorporate interactions between traits within lineages but not between lineages. In our formalism, for all i, A_{i} and Γ_{i} are block diagonal, with $d \times d$ blocks on the diagonal corresponding to the traits within each lineage. We call these blocks respectively A^{*} and Γ^{*}. Moreover, the vector a_{i} is the repetition of identical sequences a^{*} of d elements.

Writing the matrix products in Equations (4a, 4b) provides us with $d \times d$ blocks that behave identically during each epoch. Indeed, we can use :

$$
m_{\tau_{i}}^{*(k)}=\left(\begin{array}{c}
\mathbb{E}\left(X_{\tau_{i}}^{(k, 1)}\right) \\
\mathbb{E}\left(X_{\tau_{i}}^{(k, 2)}\right) \\
\vdots \\
\mathbb{E}\left(X_{\tau_{i}}^{(k, d)}\right)
\end{array}\right) \text { and } \Sigma_{\tau_{i}}^{*(k, l)}=\left(\begin{array}{cccc}
\operatorname{Cov}\left(X_{\tau_{i}}^{(k, 1)}, X_{\tau_{i}}^{(l, 1)}\right) & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, 1)}, X_{\tau_{i}}^{(l, 2)}\right) & \ldots & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, 1)}, X_{\tau_{i}}^{(l, d)}\right) \\
\operatorname{Cov}\left(X_{\tau_{i}}^{(k, 2)}, X_{\tau_{i}}^{(l, 1)}\right) & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, 2)}, X_{\tau_{i}}^{(l, 2)}\right) & \ldots & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, 2)}, X_{\tau_{i}}^{(l, d)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{\tau_{i}}^{(k, d)}, X_{\tau_{i}}^{(l, 1)}\right) & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, d)}, X_{\tau_{i}}^{(l, 2)}\right) & \ldots & \operatorname{Cov}\left(X_{\tau_{i}}^{(k, d)}, X_{\tau_{i}}^{(l, d)}\right)
\end{array}\right)
$$

In which case Equations (4a, 4b) lead to the recurrence formulae :

$$
\begin{aligned}
m_{\tau_{i+1}}^{*(k)}= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k \text { alive }}\left(\tau_{i+1}\right) A^{*}} m_{\tau_{i}}^{*(k)}+1_{k \text { alive }}\left(\tau_{i+1}\right) \int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) A^{*}} a^{*}(s) d s \\
\sum_{\tau_{i+1}}^{*(k, l)}= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i+1}\right) A^{*}} \sum_{\tau_{i}}^{*(k, l) t r}\left(e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{l} \text { alive }\left(\tau_{i+1}\right) A^{*}}\right) \\
& \left.+1_{k=l} \int_{\tau_{i}}^{\tau_{i+1}}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right)\right)^{t r}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right) d s
\end{aligned}
$$

We can then prove by induction that for any epoch i and any pair of lineages (k, l)

$$
\begin{align*}
& m_{\tau_{i}}^{*(k)}=e^{-\tau_{i} \wedge t_{k, k} A^{*}} m_{0}^{*}+\int_{0}^{\tau_{i} \wedge t_{k, k}} e^{\left(s-\tau_{i} \wedge t_{k, k}\right) A^{*}} a^{*}(s) d s \tag{S12}\\
& \Sigma_{\tau_{i}}^{*(k, l)}=e^{-\tau_{i} \wedge t_{k, k} A^{*}} \Sigma_{0}^{* t r}\left(e^{-\tau_{i} \wedge t_{l, l} A^{*}}\right)+\int_{0}^{t_{k, l} \wedge \tau_{i}}\left(e^{-\tau_{i} \wedge t_{k, k} A^{*}} \Gamma^{*}\right)^{t r}\left(e^{-\tau_{i} \wedge t_{l, l} A^{*}} \Gamma^{*}\right) d s \tag{S13}
\end{align*}
$$

Indeed, we verify Equations (S12, S13) at step $i=0$.
Now, suppose Equations (S12, S13) hold at step i. Using Equations (4a, 4b), we get :

$$
\begin{aligned}
m_{\tau_{i+1}^{-}}^{*(k)}= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i}\right) A^{*}} m_{\tau_{i}}^{*(k)}+1_{k \text { alive }}\left(\tau_{i}\right) \int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) A^{*}} a^{*}(s) d s \\
= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i}\right) A^{*}} e^{-\tau_{i} \wedge t_{k, k} A^{*}} m_{0}^{*}+\int_{0}^{\tau_{i} \wedge t_{k, k}} e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i}\right) A^{*}} e^{\left(s-\tau_{i} \wedge t_{k, k}\right) A^{*}} a^{*}(s) d s \\
& +1_{k \text { alive }}\left(\tau_{i}\right) \int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) A^{*}} a^{*}(s) d s \\
= & e^{-\tau_{i+1} \wedge t_{k, k} A^{*}} m_{0}^{*}+\int_{0}^{\tau_{i+1} \wedge t_{k, k}} e^{\left(s-\tau_{i+1} \wedge t_{k, k}\right) A^{*}} a^{*}(s) d s
\end{aligned}
$$

as well as :

$$
\begin{aligned}
\Sigma_{\tau_{i+1}}^{*(k, l)}= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i+1}\right) A^{*}} \Sigma_{\tau_{i}}^{*(k, l) t r}\left(e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{l} \text { alive }\left(\tau_{i+1}\right) A^{*}}\right) \\
& \left.+1_{k=l} \int_{\tau_{i}}^{\tau_{i+1}}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right)\right)^{\operatorname{tr}}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right) d s \\
= & e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i+1}\right) A^{*}} e^{-\tau_{i} \wedge t_{k, k} A^{*}} \Sigma_{0}^{* t r}\left(e^{-\tau_{i} \wedge t_{l, l} A^{*}}\right){ }^{t r}\left(e^{\left(\tau_{i}-\tau_{i+1}\right) l_{l} \text { alive }\left(\tau_{i+1}\right) A^{*}}\right) \\
& \left.+\int_{0}^{t t_{k, l} \wedge \tau_{i}} e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{k} \text { alive }\left(\tau_{i+1}\right) A^{*}}\left(e^{-\tau_{i} \wedge t_{k, k} A^{*}} \Gamma^{*}\right)^{\operatorname{tr}}\left(e^{-\tau_{i} \wedge t_{l, l} A^{*}} \Gamma^{*}\right)\right)^{\operatorname{tr}}\left(e^{\left(\tau_{i}-\tau_{i+1}\right) 1_{l} \text { alive }\left(\tau_{i+1}\right) A^{*}}\right) d s \\
& +1_{k=l} \int_{\tau_{i}}^{\tau_{i+1}}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right)^{\operatorname{tr}}\left(e^{\left(s-\tau_{i+1}\right) A^{*}} \Gamma^{*}\right) d s \\
= & e^{-\tau_{i+1} \wedge t_{k, k} A^{*}} \Sigma_{0}^{* t r}\left(e^{-\tau_{i+1} \wedge t_{l, l} A^{*}}\right)+\int_{0}^{t_{k, l} \wedge \tau_{i+1}}\left(e^{-\tau_{i+1} \wedge t_{k, k} A^{*}} \Gamma^{*}\right)^{\operatorname{tr}}\left(e^{-\tau_{i+1} \wedge t_{l, l} A^{*}} \Gamma^{*}\right) d s
\end{aligned}
$$

If τ_{i+1} is a death time of a lineage, Equations (S12, S13) are verified at step $i+1$.
If τ_{i+1} is a branching time, we verify that the new lineage inherits the expectation and covariances of its mother, as well as the same coalescence times with other lineages. It also follows that Equations (S12, S13) are verified at step $i+1$.

Finally, by induction, we get the tip distribution :

$$
\begin{aligned}
& m_{T}^{*(k)}=e^{-t_{k, k} A^{*}} m_{0}^{*}+\int_{0}^{t_{k, k}} e^{\left(s-t_{k, k}\right) A^{*}} a^{*}(s) d s \\
& \Sigma_{T}^{*(k, l)}=e^{-t_{k, k} A^{*}} \Sigma_{0}^{* t r}\left(e^{-t_{l, l} A^{*}}\right)+\int_{0}^{t_{k, l}}\left(e^{-t_{k, k} A^{*}} \Gamma^{*}\right)^{t r}\left(e^{-t_{l, l} A^{*}} \Gamma^{*}\right) d s
\end{aligned}
$$

B.2.1 OU-BM model

As a first illustration, consider a model with $d=3$ traits with equation during each epoch and on each lineage k as follows :

$$
\begin{aligned}
& d X_{t}^{(k, 1)}=\psi\left(b_{1}+b_{2} X_{t}^{(k, 2)}+b_{3} X_{t}^{(k, 3)}-X_{t}^{(k, 1)}\right) d t+\sigma_{1} d W_{t}^{(k, 1)} \\
& d X_{t}^{(k, 2)}=\sigma_{2} d W_{t}^{(k, 2)} \\
& d X_{t}^{(k, 3)}=\sigma_{3} d W_{t}^{(k, 3)}
\end{aligned}
$$

These equations describe the evolution of two independent traits evolving following a BM (traits 2 and 3), and one trait following an OU with optimal trait value given by a linear
combination of traits 2 and 3 . Its main interest is to infer the dependence of one trait to two other independent traits on a phylogeny. Knowing the distribution at the beginning of a given epoch, we use Equations (4a, 4b) to compute the distribution at the end of the epoch. A is block-diagonal with the following blocks A^{*} :

$$
A^{*}=\left(\begin{array}{ccc}
1 & -b_{2} & -b_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Writing $\Delta=s-\tau_{i+1}$, it follows that $e^{\Delta A_{i}}$ is block diagonal with 3×3 elements given by :

$$
e^{\Delta A^{*}}=\left(\begin{array}{ccc}
e^{\Delta} & -b_{2}\left(e^{\Delta}-1\right) & -b_{3}\left(e^{\Delta}-1\right) \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Moreover, Γ_{i} is block-diagonal with diagonal blocks :

$$
\Gamma^{*}=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right)
$$

The matrix product $\left(e^{\Delta A_{i}} \Gamma_{i}\right)^{t r}\left(e^{\Delta A_{i}} \Gamma_{i}\right)$ is thus block-diagonal with 3×3 blocks :

$$
\left(\begin{array}{ccc}
\left(\sigma_{1}^{2}+b_{2}^{2} \sigma_{2}^{2}+b_{3}^{2} \sigma_{3}^{2}\right) e^{2 \Delta}-2\left(b_{2}^{2} \sigma_{2}^{2}+b_{3}^{2} \sigma_{3}^{2}\right) e^{\Delta}+\left(b_{2}^{2} \sigma_{2}^{2}+b_{3}^{2} \sigma_{3}^{2}\right) & -b_{2} \sigma_{2}^{2}\left(e^{\Delta}-1\right) & -b_{3} \sigma_{3}^{2}\left(e^{\Delta}-1\right) \\
-b_{2} \sigma_{2}^{2}\left(e^{\Delta}-1\right) & \sigma_{2}^{2} & 0 \\
-b_{3} \sigma_{3}^{2}\left(e^{\Delta}-1\right) & 0 & \sigma_{3}^{2}
\end{array}\right)
$$

These matrices can be used to compute $m_{T}^{*(k)}$ and $\Sigma_{T}^{*(k, l)}$, with the help of Equations (S12, S13).

B.2.2 OU-OU model

Consider now a model with $d=2$ traits with equation during each epoch and on each lineage k given by :

$$
\begin{aligned}
& d X_{t}^{(k, 1)}=\psi\left(b_{1}+b_{2} X_{t}^{(k, 2)}-X_{t}^{(k, 1)}\right) d t+\sigma_{1} d W_{t}^{(k, 1)} \\
& d X_{t}^{(k, 2)}=\psi\left(b_{3}-X_{t}^{(k, 2)}\right) d t+\sigma_{2} d W_{t}^{(k, 2)}
\end{aligned}
$$

These equations describe the evolution of one trait evolving following an OU (trait 2), and one trait following an OU with optimal trait value given by an affine transformation of trait 2 . Its main interest is to infer the dependence of one trait to another trait on a phylogeny. Knowing the distribution at the beginning of a given epoch, we use Equations (4a, 4b) to compute the distribution at the end of the epoch.
A_{i} is block diagonal, with the following 2×2 blocks A^{*} :

$$
A^{*}=\left(\begin{array}{cc}
1 & -b_{2} \\
0 & 1
\end{array}\right)
$$

Again, writing $\Delta=s-\tau_{i+1}$, it follows that $e^{\Delta A_{i}}$ is block diagonal with 2×2 elements given by :

$$
e^{\Delta A^{*}}=\left(\begin{array}{cc}
e^{\Delta} & -b_{2} \Delta e^{\Delta} \\
0 & e^{\Delta}
\end{array}\right)
$$

Moreover, Γ_{i} is diagonal with repeated values :

$$
\Gamma^{*}=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)
$$

The matrix product $\left(e^{\Delta A_{i}} \Gamma_{i}\right)^{t r}\left(e^{\Delta A_{i}} \Gamma_{i}\right)$ is thus block-diagonal with $2^{*} 2$ blocks :

$$
\left(\begin{array}{cc}
\sigma_{1}^{2} e^{2 \Delta}+b_{2}^{2} \Delta^{2} \sigma^{2} e^{2 \Delta} & -b_{2} \sigma_{2}^{2} \Delta e^{2 \Delta} \\
-b_{2} \sigma_{2}^{2} \Delta e^{2 \Delta} & \sigma_{2}^{2} e^{2 \Delta}
\end{array}\right)
$$

These matrices can be used to compute $m_{T}^{*(k)}$ and $\Sigma_{T}^{*(k, l)}$, with the help of Equations (S12, S13).

C Distribution for some models With interactions BETWEEN LINEAGES

C. 1 Distribution with a constant, A symmetric, and $\Gamma=\sigma I$

When $\Gamma=\sigma I$ and A is symmetric, Equations (4a, 4b) become :

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =e^{\left(\tau_{i}-t\right) A_{i}} \mathbb{E}\left(X_{\tau_{i}}\right)+\int_{\tau_{i}}^{t} e^{(s-t) A_{i}} a_{i}(s) d s \\
\operatorname{Var}\left(X_{t}\right) & =\left(e^{\left(\tau_{i}-t\right) A_{i}}\right) \operatorname{Var}\left(X_{\tau_{i}}\right)^{t r}\left(e^{\left(\tau_{i}-t\right) A_{i}}\right)+\sigma^{2} \int_{\tau_{i}}^{t} e^{2(s-t) A_{i}} d s
\end{aligned}
$$

If A_{i} is symmetric with coefficients in \mathbb{R}, it can be diagonalized by orthogonal passage matrices : we can exhibit a matrix Q verifying ${ }^{t r} Q A_{i} Q=\Lambda_{i}$ is diagonal and $Q^{-1}={ }^{t r} Q$.

$$
\begin{aligned}
\mathbb{E}\left(X_{t}\right) & =Q e^{\left(\tau_{i}-t\right) \Lambda_{i} t r} Q \mathbb{E}\left(X_{\tau_{i}}\right)+Q\left(\int_{\tau_{i}}^{t} e^{(s-t) \Lambda_{i}} d s\right){ }^{t r} Q a_{i} \\
\operatorname{Var}\left(X_{t}\right) & =Q e^{\Lambda_{i}\left(\tau_{i}-t\right) t r} Q \operatorname{Var}\left(X_{\tau_{i}}\right) Q e^{\left(\tau_{i}-t\right) \Lambda_{i} t r} Q+\sigma^{2} Q\left(\int_{\tau_{i}}^{t} e^{2(s-t) \Lambda_{i}} d s\right){ }^{t r} Q
\end{aligned}
$$

This is the expression that we need for the numerical integration, in particular, of the phenotype matching model.

Note that with A diagonalizable but not symmetric, Equations (4a, 4b) can also be reduced, but the transposition of A is no longer A, and it does not lead exactly to the same expression.

C. 2 The phenotype matching (PM) model

We consider here the phenotype matching model introduced in Nuismer and Harmon (2014), with the following equation describing the evolution of any trait k through each epoch :

$$
d X_{t}^{(k)}=\psi\left(\theta-X_{t}^{(k)}\right) d t+S\left(\left(\frac{1}{n_{t}} \sum_{l=1}^{n_{t}} X_{t}^{(l)}\right)-X_{t}^{(k)}\right) d t+\sigma d W_{t}^{(k)}
$$

We introduce the line vector u, with value u_{j} that equals 1 if lineage j is alive, and 0 otherwise. In order to use our framework, we further want to express the model in the form given by Equation (2). This is achieved by taking :

$$
\begin{aligned}
a_{i} & =\psi \theta^{t r} u \\
A_{i} & =(\psi+S) \operatorname{diag}(u)-{\frac{S}{u^{t r} u}}^{t r} u u \\
\Gamma_{i} & =\sigma \operatorname{diag}(u)
\end{aligned}
$$

where $\operatorname{diag}(u)$ is the diagonal matrix with diagonal elements the elements of the vector u. First, the tip distribution can be computed using the general algorithm that numerically resolves the set of ODEs given in Equations (5a, 5b). Second, the PM model falls within the class of models studied in the previous section, that is, with a symmetric A matrix. The tip distribution can thus be numerically computed faster using this reduction.

We describe here a third (and faster) way to derive the tip distribution. It is based on an analytical reduction of Equations (4a, 4b) that is specific to the PM model.

Remark that $\operatorname{diag}(u)$ and ${ }^{t r} u u$ commute, leading to the following calculus,

$$
\begin{aligned}
e^{\left(\tau_{i}-\tau_{i+1}\right) A_{i}} & =e^{\left(\tau_{i}-\tau_{i+1}\right)\left((\psi+S) \operatorname{diag}(u)-\frac{S}{u^{\tau_{r}}} t r_{u u}\right.} \\
& =e^{\left(\tau_{i}-\tau_{i+1}\right)(\psi+S) \operatorname{diag}(u)} e^{-\left(\tau_{i}-\tau_{i+1}\right) \frac{S}{u^{t r_{u}} t r_{u u}}} \\
& =\operatorname{diag}\left(e^{\left(\tau_{i}-\tau_{i+1}\right)(\psi+S) u}\right)\left(\sum_{k \geq 0} \frac{\left(\frac{-\left(\tau_{i}-\tau_{i+1}\right) S}{u^{t r_{u}}}\right)^{k}\left({ }^{t r} u u\right)^{k}}{k!}\right)
\end{aligned}
$$

Where e^{w} is the line vector with elements $e^{w_{j}}$. Further, remark that for any $k \geq 1$,

$$
\begin{aligned}
\left({ }^{t r} u u\right)^{k} & =\left({ }^{t r} u u\right)\left({ }^{t r} u u\right)\left({ }^{t r} u u\right) \ldots\left({ }^{t r} u u\right) \\
& ={ }^{t r} u\left(u^{t r} u\right)\left(u^{t r} u\right) \ldots\left(u^{t r} u\right) u \\
& =\left(u^{t r} u\right)^{k-1}\left({ }^{t r} u u\right)
\end{aligned}
$$

For simplicity, we will write in the following $\Delta=\tau_{i}-\tau_{i+1}$, leading us to

$$
\begin{align*}
e^{\Delta A_{i}} & =\operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)\left(I+\sum_{k \geq 1} \frac{\left(\frac{-S \Delta}{u^{t r} u}\right)^{k}\left(u^{t r} u\right)^{k-1}\left({ }^{t r} u u\right)}{k!}\right) \\
& =\operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)\left(I+\frac{1}{u^{t r} u}\left(\sum_{k \geq 1} \frac{\left(-\left(\tau_{i}-\tau_{i+1}\right) S\right)^{k}}{k!}\right){ }^{t r} u u\right) \\
& =\operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)\left(I+\frac{1}{u^{t r} u}\left(e^{-S \Delta}-1\right)^{t r} u u\right) \\
& =\operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)+\frac{1}{u^{t r} u} \operatorname{diag}\left(e^{-S \Delta} e^{(\psi+S) \Delta u}\right)^{t r} u u-\frac{1}{u^{t r} u} \operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)^{t r} u u \\
& =\operatorname{diag}\left(e^{(\psi+S) \Delta u}\right)+\frac{1}{u^{t r} u}\left(e^{\psi \Delta}-e^{(\psi+S) \Delta}\right)^{t r} u u \tag{S14}
\end{align*}
$$

$$
\begin{align*}
\int_{\tau_{i}}^{\tau_{i+1}} e^{2\left(s-\tau_{i+1}\right) A_{i}} \Gamma_{i} \Gamma_{i} d s= & \sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}} e^{2(\psi+S)\left(s-\tau_{i+1}\right)} d s \operatorname{diag}(u) \\
& +\frac{\sigma^{2}}{u^{t r} u} \int_{\tau_{i}}^{\tau_{i+1}}\left(e^{2 \psi\left(s-\tau_{i+1}\right)}-e^{2(\psi+S)\left(s-\tau_{i+1}\right)}\right) d s^{t r} u u \operatorname{diag}(u) \\
& =\sigma^{2} \frac{\left(1-e^{2(\psi+S) \Delta}\right)}{2(\psi+S)} \operatorname{diag}(u)+\frac{\sigma^{2}}{u^{t r} u}\left(\frac{1-e^{2 \psi \Delta}}{2 \psi}-\frac{1-e^{2(\psi+S) \Delta}}{2(\psi+S)}\right){ }^{t r} u u \tag{S16}
\end{align*}
$$

We thus get $\Sigma_{\tau_{i+1}^{-}}$with the help of Equations (S14) and (S16).

C. 3 The phenotype matching (PM) model with biogeography

In this section we describe ways to compute the tip distribution under the PM model, taking into account the biogeography (that is, species interact only when they co-occur in the same localities). We consider a fixed number of islands N_{I}. Matrix U gives us the presence/absence of lineages in the distinct islands, with element $u_{i j}$ that equals 1 if lineage j is present on island i and zero otherwise. Vector S gives the strength of interaction on each island. The model states that the trait of lineage j evolves through phenotype matching with all species that are sympatric :

$$
d X_{t}^{(j)}=\psi\left(\theta-X_{t}^{(j)}\right) d t+\sum_{i=1}^{N_{I}} S_{i} u_{i j}\left(\frac{\sum_{l=1}^{n} u_{i l} X_{t}^{(l)}}{\sum_{l=1}^{n} u_{i l}}-X_{t}^{(j)}\right) d t+\sigma d W_{t}^{(j)}
$$

Take for example 5 lineages evolving on 3 distinct islands with the following U matrix on a given epoch :

$$
U=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

This means that species number 1 is present on island 2 and 3 , species number 2 is only present on island 1, and so on... Said differently, we see that species number 3 interacts on island 1 with species 2 , and on island 2 with species 1 and 4 . Our species traits are driven by the following equations :

$$
\begin{aligned}
& d X_{t}^{(1)}=\left(\psi\left(\theta-X_{t}^{(1)}\right)+S_{2}\left(\frac{X_{t}^{(1)}+X_{t}^{(3)}+X_{t}^{(4)}}{3}-X_{t}^{1}\right)+S_{3}\left(\frac{X_{t}^{(1)}+X_{t}^{(5)}}{2}-X_{t}^{1}\right)\right) d t+\sigma d W_{t}^{(1)} \\
& d X_{t}^{(2)}=\left(\psi\left(\theta-X_{t}^{(2)}\right)+S_{1}\left(\frac{X_{t}^{(2)}+X_{t}^{(3)}}{2}-X_{t}^{2}\right)\right) d t+\sigma d W_{t}^{(2)} \\
& d X_{t}^{(3)}=\left(\psi\left(\theta-X_{t}^{(3)}\right)+S_{1}\left(\frac{X_{t}^{(2)}+X_{t}^{(3)}}{2}-X_{t}^{3}\right)+S_{2}\left(\frac{X_{t}^{(1)}+X_{t}^{3}+X_{t}^{(4)}}{3}-X_{t}^{3}\right)\right) d t+\sigma d W_{t}^{(3)} \\
& d X_{t}^{(4)}=\left(\psi\left(\theta-X_{t}^{(4)}\right)+S_{2}\left(\frac{X_{t}^{(1)}+X_{t}^{3}+X_{t}^{(4)}}{3}-X_{t}^{4}\right)\right) d t+\sigma d W_{t}^{(4)} \\
& d X_{t}^{(5)}=\left(\psi\left(\theta-X_{t}^{(5)}\right)+S_{3}\left(\frac{X_{t}^{(1)}+X_{t}^{(5)}}{2}-X_{t}^{5}\right)\right) d t+\sigma d W_{t}^{(5)}
\end{aligned}
$$

It thus follows that the vectorial equation can be written :

$$
\left.d X_{t}=\left(\begin{array}{c}
\psi \theta \\
\psi \theta \\
\psi \theta \\
\psi \theta \\
\psi \theta
\end{array}\right)-\left(\begin{array}{ccccc}
\psi+\frac{2}{3} S_{2}+\frac{1}{2} S_{3} & 0 & -\frac{S_{2}}{3} & -\frac{S_{2}}{3} & -\frac{S_{3}}{2} \\
0 & \psi+\frac{1}{2} S_{1} & -\frac{S_{1}}{2} & 0 & 0 \\
-\frac{S_{2}}{3} & -\frac{S_{1}}{2} & \psi+\frac{1}{2} S_{1}+\frac{2}{3} S_{2} & -\frac{S_{2}}{3} & 0 \\
-\frac{S_{2}}{3} & 0 & -\frac{S_{2}}{3} & \psi+\frac{2}{3} S_{2} & 0 \\
-\frac{S_{1}}{2} & 0 & 0 & 0 & \psi+\frac{1}{2} S_{1}
\end{array}\right) X_{t}\right) d t+\sigma d W_{t}
$$

Provided no island is empty, the model can be written in our framework with $a=\psi \theta V$, $\Gamma=\sigma I$, and, finally, A which is the matrix with elements :

$$
\begin{aligned}
& (A)_{j j}=\psi+\sum_{i=1}^{N_{I}} S_{i} u_{i j}\left(1-\frac{1}{\sum_{l=1}^{n} u_{i l}}\right) \\
& (A)_{j k}=-\sum_{i=1}^{N_{I}} S_{i} u_{i j} u_{i k} \frac{1}{\sum_{l=1}^{n} u_{i l}}
\end{aligned}
$$ meaning that species are allowed to occur on one island only. Under this assumption, matrix $U^{T} U$ is diagonal with element $\left(U^{T} U\right)_{i i}$ being the number of lineages belonging to island i. We

now introduce the line vector r, of size N_{I}, full of ones. For simplicity, we also write in the following $\Delta=\tau_{i}-\tau_{i+1}$. With these notations, and provided no island is empty, the model can be written under our framework with :

$$
\begin{aligned}
& a_{i}=\psi \theta^{T}(r U) \\
& A_{i}=\operatorname{diag}((\psi r+S) U)-{ }^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U \\
& \Gamma_{i}=\sigma \operatorname{diag}(r U)
\end{aligned}
$$

As for the one island case, we can speed up the computation of the exponential by remarking that :

$$
\begin{aligned}
e^{\Delta A_{i}} & =e^{\Delta \operatorname{diag}((\psi r+S) U)} e^{-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U} \\
& =e^{\Delta \operatorname{diag}((4 r+S) U)} \sum_{k \geq 0} \frac{\left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right)^{k}}{k!}
\end{aligned}
$$

We then observe that:

$$
\begin{aligned}
& \left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right)^{k} \\
= & \left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right)\left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right) \ldots\left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right) \\
= & { }^{T} U(-\Delta \operatorname{diag}(S))\left(U^{T} U\right)^{-1}\left(U^{T} U\right)(-\Delta \operatorname{diag}(S))\left(U^{T} U\right)^{-1}\left(U^{T} U\right) \ldots\left(U^{T} U\right)(-\Delta \operatorname{diag}(S))\left(U^{T} U\right)^{-1} U \\
= & { }^{T} U(-\Delta \operatorname{diag}(S))^{k}\left(U^{T} U\right)^{-1} U
\end{aligned}
$$

Thus leading to the following expression :

$$
\begin{align*}
e^{\Delta A_{i}} & =e^{\Delta \operatorname{diag}((\psi r+S) U)}\left(I+\sum_{k \geq 1} \frac{\left(-\Delta^{T} U \operatorname{diag}(S)\left(U^{T} U\right)^{-1} U\right)^{k}}{k!}\right) \\
& =\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)\left(I+{ }^{T} U\left(\sum_{k \geq 1} \frac{(-\Delta \operatorname{diag}(S))^{k}}{k!}\right)\left(U^{T} U\right)^{-1} U\right) \\
& =\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)\left(I+{ }^{T} U\left(\operatorname{diag}\left(e^{-\Delta S}\right)-I\right)\left(U^{T} U\right)^{-1} U\right) \\
& =\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)\left(I-{ }^{T} U\left(U^{T} U\right)^{-1} U\right)+\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)^{T} U \operatorname{diag}\left(e^{-\Delta S}\right)\left(U^{T} U\right)^{-1} U \\
& =\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)\left(I-{ }^{T} U\left(U^{T} U\right)^{-1} U\right)+\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right) \operatorname{diag}\left(e^{-\Delta S U}\right)^{T} U\left(U^{T} U\right)^{-1} U \\
& =\operatorname{diag}\left(e^{\Delta(\psi r+S) U}\right)\left(I-{ }^{T} U\left(U^{T} U\right)^{-1} U\right)+\operatorname{diag}\left(e^{\Delta \psi r U}\right)^{T} U\left(U^{T} U\right)^{-1} U \tag{S17}
\end{align*}
$$

Where the second to last line holds under the assumption that each species belong to at most one island.

We further need to compute

$$
\begin{align*}
\int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) A_{i}} a_{i} d s & =\psi \theta \int_{\tau_{i}}^{\tau_{i+1}} \operatorname{diag}\left(e^{\left(s-\tau_{i+1}\right) \psi r U}\right) d s{ }^{T} U^{T} r \\
& =\psi \theta \int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) \psi} d s^{T} U^{T} r \\
& =\theta\left(1-e^{\psi \Delta}\right)^{T} U^{T} r \tag{S18}
\end{align*}
$$

We thus get $m_{\tau_{i+1}^{-}}$with the help of Equations (S17) and (S18).
We now turn to the reduction of the variance expression. Remark first that A_{i} and Γ_{i} are symmetric, and so are $e^{\Delta A_{i}}$ and $e^{\Delta A_{i}} \Gamma_{i}$. Moreover, Γ_{i} is diagonal, and commutes with $e^{\Delta A_{i}}$, leading to :

$$
\Sigma_{\tau_{i+1}^{-}}=e^{\Delta A_{i}} \Sigma_{\tau_{i}} e^{\Delta A_{i}}+\int_{\tau_{i}}^{\tau_{i+1}} e^{2\left(s-\tau_{i+1}\right) A_{i}} \Gamma_{i} \Gamma_{i} d s
$$

The first term can be computed thanks to equation (S17). For the second one we get

$$
\begin{align*}
\int_{\tau_{i}}^{\tau_{i+1}} e^{2\left(s-\tau_{i+1}\right) A_{i}} \Gamma_{i} \Gamma_{i} d s= & \sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}} e^{2\left(s-\tau_{i+1}\right) \operatorname{diag}(r(\psi I+S) U)} d s\left(I-{ }^{T} U\left(U^{T} U\right)^{-1} U\right) \operatorname{diag}(r U) \\
& +\sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}} e^{2\left(s-\tau_{i+1}\right) \psi \operatorname{diag}(r U)} d s^{T} U\left(U^{T} U\right)^{-1} U \operatorname{diag}(r U) \\
= & \sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}} \operatorname{diag}\left(e^{2\left(s-\tau_{i+1}\right)(\psi r+S) U}\right) d s\left(\operatorname{diag}(r U)-{ }^{T} U\left(U^{T} U\right)^{-1} U\right) \\
& +\sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}} \operatorname{diag}\left(e^{2\left(s-\tau_{i+1}\right) \psi r U}\right) d s^{T} U\left(U^{T} U\right)^{-1} U \tag{S19}
\end{align*}
$$ n_{2} butterfly traits in the X vector. Traits evolve following the equation :

$$
\begin{array}{r}
\forall k \in\left\{1, \ldots, n_{1}\right\}, d X_{t}^{(k)}=S\left(d_{1}+\frac{1}{n_{2}} \sum_{l=n_{1}+1}^{n_{1}+n_{2}} X_{t}^{(l)}-X_{t}^{(k)}\right) d t+\sigma d W_{t}^{(k)} \\
\forall l \in\left\{n_{1}+1, \ldots, n_{1}+n_{2}\right\}, d X_{t}^{(l)}=S\left(d_{2}+\frac{1}{n_{1}} \sum_{k=1}^{n_{1}} X_{t}^{(k)}-X_{t}^{(l)}\right) d t+\sigma d W_{t}^{(l)}
\end{array}
$$

At the end, we get $\Sigma_{\tau_{i+1}^{-}}$with the help of Equations (S17) and (S19).

C. 4 The generalist matching mutualism (GMM) model

We recall the model formulation here. Assume that we rank first the n_{1} plant traits, before the

In the general framework formulation, this leads to :

$$
\begin{aligned}
& a(t)={ }^{\operatorname{tr}}\left(S d_{1}, \ldots, S d_{1}, S d_{2}, \ldots, S d_{2}\right) \\
& A=\left(\begin{array}{cccccccc}
S & 0 & \ldots & 0 & \frac{-S}{n_{2}} & \ldots & \ldots & \frac{-S}{n_{2}} \\
0 & \ddots & \ddots & \vdots & \vdots & & & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\
0 & \ldots & 0 & \ddots & \frac{-S}{n_{2}} & \ldots & \ldots & \frac{-S}{n_{2}} \\
\frac{-S}{n_{1}} & \ldots & \ldots & \frac{-S}{n_{1}} & \ddots & 0 & \ldots & 0 \\
\vdots & & & \vdots & 0 & \ddots & \ddots & \vdots \\
\vdots & & & \vdots & \vdots & \ddots & \ddots & 0 \\
\frac{-S}{n_{1}} & \ldots & \ldots & \frac{-S}{n_{1}} & 0 & \ldots & 0 & S
\end{array}\right) \\
& \Gamma=\sigma I
\end{aligned}
$$

Figure (S2).

Figure S2: Generic element of the matrix $Z^{k}, \forall k \in \mathbb{N}^{*}$.

We would like to be able to compute the expectation and variance easily during each epoch. We thus want to reduce Equations (4a, 4b). For simplicity, we will write in the following $\Delta=\tau_{i}-\tau_{i+1}$. With some work, we can find the generic element of the matrix $e^{\Delta A}$.

First, we decompose $A=S(I+Z)$, where I is the identity matrix, and Z is made of two blocks with elements $\frac{-1}{n_{2}}$ and $\frac{-1}{n_{1}} . I$ and Z commute, meaning that:

$$
e^{\Delta A}=e^{\Delta S(I+Z)}=e^{\Delta S I} e^{\Delta S Z}=e^{\Delta S} e^{\Delta S Z}
$$

Moreover, we can find by induction the generic element of the matrix Z^{k}, as presented in

We then use this to find the generic element of the matrix $e^{\Delta S Z}=\sum_{k \geq 0} \frac{S^{k} \Delta^{k} Z^{k}}{k!}=I+\sum_{k \geq 1} \frac{S^{k} \Delta^{k} Z^{k}}{k!}$. We recall that the odd and even parts of the exponential are :

$$
\begin{aligned}
e^{\lambda}-e^{-\lambda} & =\sum_{k \geq 0} \frac{\lambda^{k}}{k!}-\sum_{k \geq 0} \frac{(-1)^{k} \lambda^{k}}{k!}=2 \sum_{k \geq 0} \frac{\lambda^{2 k+1}}{(2 k+1)!} \\
\text { and } \quad e^{\lambda}+e^{-\lambda} & =2 \sum_{k \geq 0} \frac{\lambda^{2 k}}{(2 k)!}
\end{aligned}
$$

Then, matrices $e^{\Delta S Z}$ and $e^{\Delta A}$ are composed of four distinct blocks, which expressions are shown in Figure S3.

where $\quad \alpha:=\frac{e^{2 S \Delta}-2 e^{S \Delta}+1}{2}$

$$
\beta:=\frac{1-e^{2 S \Delta}}{2}
$$

Figure S3: Generic elements of matrices $e^{\Delta S Z}$ and $e^{\Delta A}$.

$$
\begin{aligned}
& m_{\tau_{i+1}^{-}}=e^{\Delta A_{i}} m_{\tau_{i}}+\int_{\tau_{i}}^{\tau_{i+1}} e^{\left(s-\tau_{i+1}\right) A_{i}} a_{i}(s) d s \\
& =e^{\Delta A_{i}} m_{\tau_{i}}+\int_{\tau_{i}}^{\tau_{i+1}}\left(\begin{array}{c}
S d_{1} e^{S\left(s-\tau_{i+1}\right)}+S d_{1} \frac{e^{2 S\left(s-\tau_{i+1}\right)}-2 e^{S\left(s-\tau_{i+1}\right)}+1}{2}+S d_{2} \frac{1-e^{2 S\left(s-\tau_{i+1}\right)}}{2} \\
\vdots \\
S d_{1} e^{S\left(s-\tau_{i+1}\right)}+S d_{1} \frac{e^{2 S\left(s-\tau_{i+1}\right)}-2 e^{S\left(s-\tau_{i+1}\right)}+1}{2}+S d_{2} \frac{1-e^{2 S\left(s-\tau_{i+1}\right)}}{2} \\
S d_{2} e^{S\left(s-\tau_{i+1}\right)}+S d_{1} \frac{1-e^{2 S\left(s-\tau_{i+1}\right)}}{2}+S d_{2} \frac{e^{2 S\left(s-\tau_{i+1}\right)}-2 e^{S\left(s-\tau_{i+1}\right)}+1}{2} \\
\vdots \\
S d_{2} e^{S\left(s-\tau_{i+1}\right)}+S d_{1} \frac{1-e^{2 S\left(s-\tau_{i+1}\right)}}{2}+S d_{2} \frac{e^{2 S\left(s-\tau_{i+1}\right)}-2 e^{S\left(s-\tau_{i+1}\right)}+1}{2}
\end{array}\right) d s \\
& m_{\tau_{i+1}^{-}}=e^{\Delta A_{i}} m_{\tau_{i}}+\int_{\tau_{i}}^{\tau_{i+1}}\left(\begin{array}{c}
S \frac{d_{1}+d_{2}}{2}+S \frac{d_{1}}{2} e^{2 S\left(s-\tau_{i+1}\right)}-S \frac{d_{2}}{2} e^{2 S\left(s-\tau_{i+1}\right)} \\
\vdots \\
S \frac{d_{1}+d_{2}}{2}+S \frac{d_{1}}{2} e^{2 S\left(s-\tau_{i+1}\right)}-S \frac{d_{2}}{2} e^{2 S\left(s-\tau_{i+1}\right)} \\
S \frac{d_{1}+d_{2}}{2}-S \frac{d_{1}}{2} e^{2 S\left(s-\tau_{i+1}\right)}+S \frac{d_{2}}{2} e^{2 S\left(s-\tau_{i+1}\right)} \\
\vdots \\
S \frac{d_{1}+d_{2}}{2}-S \frac{d_{1}}{2} e^{2 S\left(s-\tau_{i+1}\right)}+S \frac{d_{2}}{2} e^{2 S\left(s-\tau_{i+1}\right)}
\end{array}\right) d s \\
& =e^{\Delta A_{i}} m_{\tau_{i}}+\left(\begin{array}{c}
-S \frac{d_{1}+d_{2}}{2} \Delta+\frac{d_{1}}{4}\left(1-e^{2 S \Delta}\right)-\frac{d_{2}}{4}\left(1-e^{2 S \Delta}\right) \\
\vdots \\
-S \frac{d_{1}+d_{2}}{2} \Delta+\frac{d_{1}}{4}\left(1-e^{2 S \Delta}\right)-\frac{d_{2}}{4}\left(1-e^{2 S \Delta}\right) \\
-S \frac{d_{1}+d_{2}}{2} \Delta-\frac{d_{1}}{4}\left(1-e^{2 S \Delta}\right)+\frac{d_{2}}{4}\left(1-e^{2 S \Delta}\right) \\
\vdots \\
-S \frac{d_{1}+d_{2}}{2} \Delta-\frac{d_{1}}{4}\left(1-e^{2 S \Delta}\right)+\frac{d_{2}}{4}\left(1-e^{2 S \Delta}\right)
\end{array}\right)
\end{aligned}
$$

We thus got the main element from which we can derive the expectation vector $m_{\tau_{i+1}^{-}}$:

We now turn to the derivation of the covariance matrix, which requires simplifying :

$$
\int_{\tau_{i}}^{\tau_{i+1}}\left(e^{\left(s-\tau_{i+1}\right) A_{i}} \Gamma_{i}(s)\right)^{t r}\left(e^{\left(s-\tau_{i+1}\right) A_{i}} \Gamma_{i}(s)\right) d s=\sigma^{2} \int_{\tau_{i}}^{\tau_{i+1}}\left(e^{\left(s-\tau_{i+1}\right) A_{i}}\right)^{t r}\left(e^{\left(s-\tau_{i+1}\right) A_{i}}\right) d s
$$

The expression of this last matrix is given in Figure S4.

Figure S4: Generic elements of matrices that help us compute the covariance matrix of the distribution.

We do not give any new result in this Appendix section. Instead, we present the ways we implemented numerically simulations and inferences for all models described in the paper. These have been previously described in a number of papers.

D. 1 Numerical methods for simulating data

D.1.1 Simulating the whole trajectory of the process

We use the Euler-Maruyama scheme, which works like the Euler scheme for ODEs, but with the addition of a small Gaussian random variable at each time step (Gardiner et al. 1985). We discretize each epoch $\left(\tau_{i}, \tau_{i+1}\right)$ with a mesh Δ_{t}. We consider m standard Gaussian vectors of dimension $n d:\left(U_{j}\right)_{j=1}^{m}$. We approximate our SDE on this interval in the following way :

$$
\begin{aligned}
& Y_{0}=X_{0} \\
& Y_{\tau_{i}+m \Delta_{t}}=Y_{\tau_{i}+(m-1) \Delta_{t}}+\left(a_{i}\left(\tau_{i}+(m-1) \Delta_{t}\right)-A_{i} Y_{\tau_{i}+(m-1) \Delta_{t}}\right) \Delta_{t}+\Gamma\left(\tau_{i}+(m-1) \Delta_{t}\right) \sqrt{\Delta_{t}} U_{m}
\end{aligned}
$$

When a branching occurs, the values of the process on the splitting branch are duplicated at the end of the vector Y. We then iterate this operation from the root up to present time.

This simulation allows us to get the whole trajectory of the process on the tree, which can mainly be used to produce pictures as in Figure S5, and eventually get a useful intuition on the process. However, we rarely use the whole trajectories, because observed data are only composed of tip trait values.

D.1.2 Simulating values of the process at the tips only

This second simulation protocol allows us to simulate the process values at the tips only. Suppose that we know the vector m of expectations and the covariance matrix Σ at the tips of the tree. We then simply simulate numerically a Gaussian vector with law :

Figure S5: Evolution of a Brownian phenotypic trait along a tree, following the SDE : $d X_{t}=$ $\sigma I d W_{t}$.

$$
X_{t_{f}} \sim \mathcal{N}(m, \Sigma)
$$

This is by far the quickest way to get the tip values. However, as the inference protocol relies on the use of the same vector of expectations and covariance matrix, one may prefer to use the other simulation protocols to test the consistency between simulation and inference. In case there is an issue with the derivation of the tip distribution, there would be a discrepancy between simulations and inferences.

D. 2 Parameter inference

D.2.1 Parameter inference principle

We consider here that we know the topology of the true phylogeny with K tips, its branch lengths, and the state of d phenotypic traits at the tip, denoted by \mathcal{X}.

We assume any model of phenotypic evolution relying on linear SDEs, with vector of parameters p. We can compute the expectation m_{p} and the covariance Σ_{p} of the process X at tree tips, which law is then : $X \sim \mathcal{N}\left(m_{p}, \Sigma_{p}\right)$. Recall from Appendix A. 2 that Σ_{p} is positive
definite in most cases, and is thus theoretically non-singular. However, one must be cautious with numerical implementations, as numerical approximations might still lead to 'numerically non-invertible' matrices. Here, we assume that the variance matrix is invertible, and the density of the vector X is :

$$
\forall x \in \mathbb{R}^{K d}, \quad f(x)=\frac{1}{\sqrt{(2 \pi)^{K d} \operatorname{det}\left(\Sigma_{p}\right)}} e^{-\frac{1}{2} t r\left(x-m_{p}\right) \Sigma_{p}^{-1}\left(x-m_{p}\right)}
$$

We can thus write the likelihood of the observed phenotypic traits as,

$$
\begin{aligned}
\mathcal{L}(p) & =f(\mathcal{X} \mid p) \\
& =\frac{1}{\sqrt{(2 \pi)^{K d} \operatorname{det}\left(\Sigma_{p}\right)}} e^{-\frac{1}{2} t r\left(\mathcal{X}-m_{p}\right) \Sigma_{p}^{-1}\left(\mathcal{X}-m_{p}\right)}
\end{aligned}
$$

The maximum likelihood estimators (MLE) are the parameter values that maximize the likelihood function, that is,

$$
\hat{p}=\underset{p}{\operatorname{argmax}} \mathcal{L}(p)
$$

Equivalently, we can minimize the following function,

$$
-\ln (\mathcal{L}(p))=\frac{1}{2} K d \ln (2 \pi)+\frac{1}{2} \ln \left(\operatorname{det}\left(\Sigma_{p}\right)\right)+\frac{1}{2}{ }^{\operatorname{tr}}\left(\mathcal{X}-m_{p}\right) \Sigma_{p}^{-1}\left(\mathcal{X}-m_{p}\right)
$$

or, removing the constants,

$$
U(p)=\ln \left(\operatorname{det}\left(\Sigma_{p}\right)\right)+{ }^{t r}\left(\mathcal{X}-m_{p}\right) \Sigma_{p}^{-1}\left(\mathcal{X}-m_{p}\right)
$$

D.2.2 Analytical derivation of the MLE

Among all models described in the paper, only the BM model allows the analytic derivation of the MLE estimators. Take for illustration a BM model without drift starting with $\left(m_{0}, v_{0}\right)=(0,0)$. According to Table S1, the expectation m and covariance matrix Σ at the tips are $m=0$ and $\Sigma=\sigma^{2} T$, where matrix T has element $T^{(k, l)}=t_{k, l}$.

- starting an OU process with $m_{0}=\theta$,
- considering no root variance, $v_{0}=0$, remains θ in all lineages),
- putting $\psi=0$ in the PM model. maximizing $\ln \left(\mathcal{L}\left(p_{1}, p_{2}\right)\right)$,

$$
\widehat{\sigma}^{2}=\frac{1}{n}{ }^{t r} \mathcal{X} T^{-1} \mathcal{X}
$$

D.2.3 Speeding up the ML estimation by reducing the dimension of the parameter space

Maximizing the likelihood can take a long time, especially when the dimension of the parameter space is large. It can thus be interesting to make assumptions that lower the number of parameters, when this is biologically tolerable. Examples include,

- starting a PM model with $m_{0}=\theta$ (in which case we easily show that the expectation

In many models (e.g. BM, OU, ACDC, PM with $m_{0}=\theta \ldots$), distinct sets of parameters p_{1} and p_{2} are involved in the computation of m and Σ, and the expectation vector m can be expressed as $m=C p_{1}$. In this case, at a given p_{2}, we can analytically get the parameters p_{1}

$$
\frac{\partial}{\partial p_{1}} U\left(p_{1}, p_{2}\right)=0 \Longleftrightarrow{\frac{d}{d p_{1}}}^{t r}\left(\mathcal{X}-C p_{1}\right) \Sigma_{p_{2}}^{-1}\left(\mathcal{X}-C p_{1}\right)=0
$$

Doing so, we get the same formula as in (Hansen 1997; Butler and King 2004), i.e.

In [219]: source("Loading.R")

```
    newick <- "((((A:1,B:0.5):2,(C:3,D:2.5):1):6,E:10.25):2,(F:6.5,G:8.25):3):1;"
    tree <- read.tree(text=newick)
plot(tree)
```


E. 1 The 'PhenotypicModel' class

Our code is structured around one main R class that we called 'PhenotypicModel', which is intended to mimic the framework that we proposed in the main text. Each object of the 'PhenotypicModel' encompasses informations on the tree, on the parameters of the model, on the starting values, and, finally, on the collection of $\left(a_{i}, A_{i}, \Gamma_{i}\right)$ for all epochs.

E.1.1 Loading a pre-defined model

Because we wanted this code both to be user-friendly and to serve as an illustration of what can be written within this framework, we implemented all models in main Table 1 in a generic constructor createModel, in the file 'ModelBank.R', that takes for arguments the tree and the name of the required model.

Available models include :

BM Brownian Motion model with linear drift.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving independently after branching following the equation.

$$
d X_{t}^{(i)}=d d t+\sigma d W_{t}^{(i)}
$$

BM_from0 Same as above, but starting with two lineages having the same value $X_{0} \sim \mathcal{N}(0,0)$.

BM_from0_driftless Same as above, but with $d=0$.

OU Ornstein-Uhlenbeck model.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving independently after branching, following the equation :

$$
d X_{t}^{(i)}=\psi\left(\theta-X_{t}\right) d t+\sigma d W_{t}^{(i)}
$$

OU _from0 Same as above, but starting with two lineages having the same value $X_{0} \sim \mathcal{N}(0,0)$.

ACDC ACcelerating or DeCelerating model.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving independently after branching, following the equation :

$$
d X_{t}^{(i)}=\sigma_{0} e^{r t} d W_{t}^{(i)}
$$

DD Diversity-Dependent model.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving independently after branching, following the equation :

$$
d X_{t}^{(i)}=\sigma_{0} e^{r n_{t}} d W_{t}^{(i)}
$$

PM Phenotype Matching model.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving then non-independently following the expression :

$$
d X_{t}^{(i)}=\psi\left(\theta-X_{t}^{(i)}\right)+S\left(\frac{1}{n} \sum_{k=1}^{n} X_{t}^{(k)}-X_{t}^{(i)}\right)+\sigma d W_{t}^{(i)}
$$

PM_OUless Simplified Phenotype Matching model.
Starts with two lineages having the same value $X_{0} \sim \mathcal{N}\left(m_{0}, v_{0}\right)$.
One trait in each lineage, all lineages evolving then non-independently following the expression :

$$
d X_{t}^{(i)}=S\left(\frac{1}{n} \sum_{k=1}^{n} X_{t}^{(k)}-X_{t}^{(i)}\right)+\sigma d W_{t}^{(i)}
$$

*** Object of Class PhenotypicModel ***
*** Name of the model : [1] "BM"
*** Parameters of the model : [1] "m0" "v0" "d" "sigma"
*** Description : Brownian Motion model with linear drift.
Starts with two lineages having the same value X_0 ~ Normal(m0,v0).
One trait in each lineage, all lineages evolving independently after branching.
dX_t = d dt + sigma dW_t
*** Periods : the model is cut into 13 parts.
For more details on the model, call : print(PhenotypicModel)

In [222]: print(modeloU)
*** Object of Class PhenotypicModel ***
*** Name of the model : [1] "OU"
*** Parameters of the model : [1] "m0" "v0" "psi" "theta" "sigma"
*** Description : Ornstein-Uhlenbeck model.

Starts with two lineages having the same value X_0 ~Normal(m0,v0).
One trait in each lineage, all lineages evolving independently after branching.
dX_t = psi(theta- X_t) dt + sigma dW_t
*** Epochs : the model is cut into 13 parts.
[1] $\begin{array}{lllllllllllllll}0.00 & 2.00 & 3.00 & 8.00 & 9.00 & 9.50 & 10.00 & 10.50 & 11.00 & 11.25 & 11.50 & 12.00\end{array}$
[13] 12.25
*** Lineages branching (to be copied at the end of the corresponding period) :
[1] $\begin{array}{llllllllllllll}1 & 1 & 2 & 1 & 5 & 2 & 1 & 7 & 1 & 4 & 6 & 5 & 3\end{array}$

```
*** Positions of the new trait at the end of each period :
```

[1] 2345607000000

```
*** Initial condition :
function (params)
return(list(mean = c(params[1]), var = matrix(c(params[2]))))
<environment: 0x9617460>
*** Vectors a_i, A_i, Gamma_i on each period i :
function (i, params)
{
    vectorU <- getLivingLineages(i, eventEndOfPeriods)
    vectorA <- function(t) return(params[3] * params [4] * vectorU)
    matrixGamma <- function(t) return(params[5] * diag(vectorU))
    matrixA <- params[3] * diag(vectorU)
    return(list(a = vectorA, A = matrixA, Gamma = matrixGamma))
```

\}
<environment: 0x9617460>
*** Constraints on the parameters :
function (params)
return (params [2] >= 0 \&\& params [5] >= 0 \&\& params [3] != 0)
<environment: 0x9617460>
*** Defaut parameter values : [1] 000101
*** Tip labels :

```
[1] "A" "B" "C" "D" "E" "F" "G"
*** Tip labels for simulations :
[1] "A" "F" "E" "G" "C" "D" "B"
```


E.1.3 List of class attributes

The latter command gave us some insight into how a PhenotypicModel is defined. It has the following list of attributes :
name a name,
paramsNames the names of all parameters,
comment a short description,
period the vector of times at which successive branching and death of lineages occur,
numbersCopy vector containing the lineage number which branches or dies at the end of each period,
numbersPaste vector containing the lineage number in which a daughter lineage is placed at the end of each period (zero if the end of the period corresponds to a death),
initialCondition a function of the parameters giving the initial mean and variance of the gaussian process at the root of the tree,
aAGamma the functions corresponding to $a_{i}(t), A_{i}$, and $\Gamma_{i}(t)$ that define the evolution of the process on each period, depending on parameters,
constraints a function of the parameters giving the definition range,
params0 a vector of defaut parameter values.

Each of these attributes can be accessed and changed through the use of the following syntax.

In [223]: modelBM['name']
**
*** Object of Class PhenotypicModel ***
*** Name of the model : [1] "OU"
*** Parameters of the model : [1] "mean0" "var0" "selectionStrength"
[4] "equilibrium" "noise"
*** Description : Ornstein-Uhlenbeck model.
Starts with two lineages having the same value X_0 ~Normal(m0,v0).
One trait in each lineage, all lineages evolving independently after branching.
dX_t = psi(theta- X_t) dt + sigma dW_t
*** Periods : the model is cut into 13 parts.
For more details on the model, call : print(PhenotypicModel)
**

However, changes must be made cautiously, in order to keep a coherent model. For example, changing 'paramsNames' for a shorter vector would not be authorized, but other deleterious actions could work and lead to issues with methods associated to PhenotypicModel objects.

In [226]: modelOU['paramsNames'] <- c("mean0", "var0")

Error in validityMethod(as(object, superClass)): [PhenotypicModel : validation] There should be the same number of defaut parameters and parameter names.

E. 2 Methods associated to the 'PhenotypicModel' class

All 'PhenotypicModel' objects are associated to methods intended to do the basic operations that we need to do with models of trait evolution, i.e.,

1. simulate tip trait data,
2. compute the likelihood of tip trait data,
3. fit the model to tip trait data.

E.2. 1 Simulating tip trait data

The method simulateTipData works for any PhenotypicModel object. We simply give it the model and the set of parameters and it returns a realisation of the process (tip data).

In [227]: dataBM <- simulateTipData(modelBM, $c(0,0,0,1))$ dataBM
*** Simulation of tip trait values ***
Simulates step-by-step the whole trajectory, but returns only the tip data.
Computation time : 0.3909395 secs

Out [227]:

A	-2.71863
F	1.043329
E	0.665404
G	-3.440327
C	0.272335
D	-0.7023421
B	-2.010951

A third, optional, argument, changes the behaviour of the method.

- "method=1" : first computes the tip distribution at present, before drawing a realization of this distribution,

In [228]: dataOU <- simulateTipData(modelOU, $c(0,0,1,5,1)$, method=1) dataOU
*** Simulation of tip trait values ***
Computes the tip distribution, and returns a simulated dataset drawn in this distribution.
Computation time : 0.0009741783 secs
Out [228]:

A	4.179412
B	5.776153
C	4.984526
D	4.480901
E	5.693471
F	4.636019
G	5.815942

In [229]: simulateTipData(modelBM, $c(0,0,0,1)$, method=2)
*** Simulation of tip trait values ***
Simulates step-by-step the whole trajectory, plots it, and returns tip data.
Computation time : 0.479032 secs

- "method $=2$ " : simulates step-by-step the whole trajectory of the process, plots the trajectories through time, and returns the tip data.
- "method=3" : (default) simulates step-by-step the whole trajectory of the process, before returning only the tip data.

A	1.850113
F	-1.846854
E	-0.6321431
G	4.701758
C	-0.1940776
D	-2.077116
B	-0.7752916

476
E.2.2 Getting the distribution of the model under a given set of parameters

The method getTipDistribution computes the mean vector m and variance matrix Σ such that, under the model, the tip trait data X follows $\mathcal{N}(m, \Sigma)$.

The related method getDataLikelihood returns the - \ln (likelihood) of a given data set under the model, with a given set of parameters.

In [230]: getTipDistribution(modelBM, c(0,0,1,1))

482 Out [230]:

E.2.3 Maximum likelihood estimation of parameters

The method fitTipData uses the latter two methods to find the set of parameters that minimizes - \ln (likelihood) for a given model, on a given data set. We can apply this method to simulated datasets, and compare the maximum likelihood estimators with the parameters used in the simulation.

Note that this function accepts a third, optional, parameter, that is the starting vector 'params0' given to optimize the likelihood. If no value is specified, the function takes the attribute 'params0' in the PhenotypicModel object.

In [232]: fitTipData(modelBM, dataBM)

```
*** Fit of tip trait data ***
```

Finds the maximum likelihood estimators of the parameters, returns the likelihood and the inferred parameters. **WARNING** : This function uses the standard R optimizer "optim". It may not always converge well.

Please double check the convergence by trying distinct parameter sets for the initialisation. Computation time : 0.02105212 secs Out [232]:
\$value 13.3539168672421
\$inferredParams m0 0.112360024529455
v0 $4.3703974585017 \mathrm{e}-08$
d -0.0733871266399529
sigma 0.64761762031608

In [233]: fitTipData(modelOU, dataOU)
*** Fit of tip trait data ***
Finds the maximum likelihood estimators of the parameters, returns the likelihood and the inferred parameters.
WARNING : This function uses the standard R optimizer "optim".
It may not always converge well.
Please double check the convergence by trying
distinct parameter sets for the initialisation.
Computation time : 0.2915776 secs

Out [233]:
\$value 7.5162883379935
\$inferredParams mean0 13.5665180225751

```
var0 1.6815664554916e-05
selectionStrength 0.648513938633288
equilibrium 5.05532921748184
noise 0.766630199120977
```

It doesn't seem quite good, but it also seems like the choice in the starting parameters m_{0}, v_{0} has a bad influence. As presented in Online Appendix D.2, in many models (e.g. BM, OU, ACDC, PM with $m_{0}=\theta \ldots$), distinct sets of parameters p_{1} and p_{2} are involved in the computation of m and Σ, and the expectation vector m can be expressed as $m=C p_{1}$. In particular, many models verify $m={ }^{\operatorname{tr}}\left(m_{0}, m_{0}, \ldots m_{0}\right)$. When this is the case, the fit of tip data can be improved and speeded up by using the third parameter of the function GLSstyle=TRUE.

In [234]: fitTipData(modelBM, dataBM, GLSstyle=TRUE) fitTipData(modelOU, dataOU, GLSstyle=TRUE)

*** Fit of tip trait data ***

Finds the maximum likelihood estimators of the parameters,
returns the likelihood and the inferred parameters.
WARNING : This function uses the standard R optimizer "optim".
It may not always converge well.
Please double check the convergence by trying
distinct parameter sets for the initialisation.
Computation time : 0.03260899 secs
Out [234]:
\$value 13.5302740469078
\$inferredParams m0 -0.00550320295296933
v0 $2.28469756397133 \mathrm{e}-07$
d -0.313019528308928
sigma 0.663621107698308

```
*** Fit of tip trait data ***
Finds the maximum likelihood estimators of the parameters,
returns the likelihood and the inferred parameters.
Computation time : 0.1760004 secs
Out [234]:
$value 7.82305350777471
$inferredParams mean0 5.10957361631891
    var0 3.36222531349288e-05
    selectionStrength 1.87722870245168
    equilibrium -1.98889519193151
    noise 1.91905948952067
```

With so few data in hand, we could also prefer to consider directly models starting with $\left(m_{0}, v_{0}\right)=(0,0)$. We create two new models 'BM_from0' and 'OU_from0' with the subtle difference that $\left(m_{0}, v_{0}\right)=(0,0)$ and the models thus retain respectively only two and three parameters.

These two models are included in the 'ModelBank' file.

In [235]: modelBMfromZero <- createModel(tree, 'BM_from0') modelBMfromZero['paramsNames']

Out [235]: 'd' 'sigma'

In [236]: modelOUfromZero <- createModel(tree, 'OU_from0') modelOUfromZero['paramsNames']

Out [236]: 'psi' 'theta' 'sigma'

In [237]: fitTipData(modelBMfromZero, dataBM)

```
    *** Fit of tip trait data ***
    Finds the maximum likelihood estimators of the parameters,
    returns the likelihood and the inferred parameters.
    **WARNING** : This function uses the standard R optimizer "optim".
    It may not always converge well.
    Please double check the convergence by trying
    distinct parameter sets for the initialisation.
    Computation time : 0.01061678 secs
Out[237]:
$value 13.3540474589618
$inferredParams d -0.0633929373190768
    sigma 0.647501517840828
Out [237]:
\$value 13.3540474589618
\$inferredParams d -0.0633929373190768
sigma 0.647501517840828
```

The fitTipData function uses the optim function available in R to maximize the likelihood. This optimizer is widely used to fit phenotypic models, but is known to sometimes converge on a local optima rather than the maximum likelihood. It is thus important to assess the sensitivity of the solution to the choice of the initial parameter values before drawing conclusions.

Finally, the functions getTipDistribution, simulateTipData and fitTipData all have a last optional argument, called v for "verbose mode". With v=TRUE, the functions gives informations in the console, whereas with $\mathrm{v}=\mathrm{FALSE}$ the function remains silent.

E. 3 Toward an in-depth understanding of the code structure

E.3.1 Relationships between the different classes of models

The superclass, for which all the above-mentionned functions are defined, is the PhenotypicModel class. When a model is only known as a PhenotypicModel, the method that
computes the tip distribution, namely getTipDistribution is the most general one. It thus computes the distribution by resolving numerically the ODE system presented in main text Equations (5a, 5b), which can take a lot of time.

However, faster algorithms are available to compute the tip distribution under specific models (see e.g. analytical tip distribution formulas in Table S1). This is the rationale to define subclasses :

PhenotypicBM For the Brownian model.
PhenotypicOU For the Ornstein-Uhlenbeck model.
PhenotypicACDC For the Accelerating/Decelerating model.
PhenotypicDD For the Diversity-Dependent model.
PhenotypicPM For the Phenotype-Matching model.

PhenotypicGMM For the Generalist Matching Mutualism model.
PhenotypicADiag Models for which, $\forall i, A_{i}$ is symmetric and $\Gamma_{i}=\sigma I$.

For each of these subclasses, an other, more appropriated, function getTipDistribution has been written. PhenotypicModels which are also PhenotypicOU, will preferentially use methods defined for PhenotypicOU when they exist.

E.3.2 Application : three different ways to define an $O U$

In the createModel function, the keyword 'OU' constructs a model in the class PhenotypicOU. In this class, the function getTipDistribution uses the analytical formula show in Online Appendix B. 1 to speed up the computation of m and Σ.

Alternatively, the keyword 'OUbis' defines the exact same model, but as an instance of the class PhenotypicADiag. Thus, the function getTipDistribution uses the reduction show in Online Appendix C. 1 to compute m and Σ.
In [240]: modelOU <- createModel(tree, 'OU')
modelOUbis <- createModel(tree, 'OUbis')
modelOUter <- createModel(tree, 'OUter')
params <- c $(0,0,0.2,1,2)$

In [241]: getTipDistribution(modelOU, params, v=TRUE)
*** Computation of tip traits distribution through the analytical formula for an OU process *** Computation time : 0.000497818 secs

Out [241]:
A 0.8891968
B 0.8775436
C 0.909282
\$mean
D 0.8997412
E 0.9137064
F 0.8504314
G 0.8946008
Last, the keyword 'OUter' still defines the exact same model, but as an instance of the class PhenotypicModel. Thus, the function getTipDistribution uses the resolution of the ODE system to compute m and Σ.

The following lines of code show that the function returns the same value with the three different methods, but do not take the same amount of time.

In [240]: modelOU <- createModel(tree, 'OU')

\$Sigma

	A	B	C	D	E	F	G
A	9.8772266	7.2724966	2.3654513	2.6142280	0.1171813	0.0000000	0.0000000
B	7.2724966	9.8500442	2.6142280	2.8891687	0.1295054	0.0000000	0.0000000
C	2.36545128	2.61422796	9.91770253	3.23775807	0.09593997	0.00000000	0.00000000
D	2.6142280	2.8891687	3.2377581	9.8994816	0.1060301	0.0000000	0.0000000
E	0.11718135	0.12950541	0.09593997	0.10603007	9.92553417	0.00000000	0.00000000
F	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	9.7762923	0.3657529
G	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.3657529	9.8889100

In [242]: getTipDistribution(modelOUbis, params, v=TRUE)

```
*** Computation of tip traits distribution through integrated formula ***
(Method working for models with a constant, A diagonalizable, and Gamma constant)
Computation time : 0.002770185 secs
```


\$Sigma

	A	F	E	G	C	D	B
A	9.8772266	0.0000000	0.1171813	0.0000000	2.3654513	2.6142280	7.2724966
F	0.0000000	9.7762923	0.0000000	0.3657529	0.0000000	0.0000000	0.0000000
E	0.11718135	0.00000000	9.92553417	0.00000000	0.09593997	0.10603007	0.12950541
G	0.0000000	0.3657529	0.0000000	9.8889100	0.0000000	0.0000000	0.0000000
C	2.36545128	0.00000000	0.09593997	0.00000000	9.91770253	3.23775807	2.61422796
D	2.6142280	0.0000000	0.1060301	0.0000000	3.2377581	9.8994816	2.8891687
B	7.2724966	0.0000000	0.1295054	0.0000000	2.6142280	2.8891687	9.8500442

In [243]: getTipDistribution(modelOUter, params, v=TRUE)
*** Computation of tip traits distribution through ODE resolution ***
(Method working for any model)
Computation time : 0.01829243 secs

A	0.8891984	
	F	0.8504309
E87 Smean	G	0.9137081
	C	0.8946024
	D	0.899742937
	B	0.8775447

\$Sigma

	A	F	E	G	C	D	B
A	9.8772243	0.0000000	0.1171837	0.0000000	2.3654834	2.6142593	7.2725143
F	0.0000000	9.7762896	0.0000000	0.3657561	0.0000000	0.0000000	0.0000000
E	0.11718371	0.00000000	9.92553239	0.00000000	0.09594306	0.10603262	0.12950776
G	0.0000000	0.3657561	0.0000000	9.8889077	0.0000000	0.0000000	0.0000000
C	2.36548343	0.00000000	0.09594306	0.00000000	9.91769978	3.23780799	2.61425810
D	2.6142593	0.0000000	0.1060326	0.0000000	3.2378080	9.8994793	2.8891973
B	7.2725143	0.0000000	0.1295078	0.0000000	2.6142581	2.8891973	9.8500418

In [244]: dataOU <- simulateTipData(modelOU, $c(0,0,0.2,1,2))$
fitTipData(modelOU, dataOU)
fitTipData(modelOUbis, dataOU)
fitTipData(modelOUter, dataOU)
*** Simulation of tip trait values ***
Simulates step-by-step the whole trajectory, but returns only the tip data.
Computation time : 0.2363398 secs
*** Fit of tip trait data ***
Finds the maximum likelihood estimators of the parameters,
returns the likelihood and the inferred parameters.
WARNING : This function uses the standard R optimizer "optim".
It may not always converge well.
Please double check the convergence by trying
distinct parameter sets for the initialisation.

```
Computation time : 0.1814284 secs
```

Out [244]:
\$value 15.0174906724384
\$inferredParams m0 -26.3722559360675
v0 0.111663973605588
psi 0.0973609295443122
theta 14.9673044542728
sigma 1.12338425846849
*** Fit of tip trait data ***
Finds the maximum likelihood estimators of the parameters, returns the likelihood and the inferred parameters.
WARNING : This function uses the standard R optimizer "optim".
It may not always converge well.
Please double check the convergence by trying
distinct parameter sets for the initialisation.
Computation time : 0.7557919 secs

Out [244] :
\$value 15.0174906724384
\$inferredParams m0 -26.3722559360675
v0 0.111663973605588
psi 0.0973609295443122
theta 14.9673044542728
sigma 1.12338425846849
*** Fit of tip trait data ***
Finds the maximum likelihood estimators of the parameters,

```
returns the likelihood and the inferred parameters.
**WARNING** : This function uses the standard R optimizer "optim".
It may not always converge well.
Please double check the convergence by trying
distinct parameter sets for the initialisation.
Computation time : 6.088683 secs
Out [244]:
$value 15.0174914969285
$inferredParams m0 -26.3722559360675
    v0 0.111663973605588
    psi 0.0973609295443122
    theta 14.9673044542728
    sigma 1.12338425846849
```

Focusing on the computation time, it is quite easily seen how interesting it can be to do some more analytical work and write more appropriated getTipDistribution functions. Still, the defaut function written for the superclass PhenotypicModel should always work.

E.3.3 Using the framework to define a new model

We illustrate here how the current code can be used to numerically study a specific model that has not been implemented elsewhere. We focus here on the implementation of the 'GMM' model described in the main text, explaining step by step the following procedure, that is generalizable to any model :

1. we identify what the periods are,
2. we write the model in a vectorial form on each period,
3. we implement it naively first,
In [245]: newick1 <- "(((A:1,B:1):3,(C:3,D:3):1):2,E:6);"
tree1 <- read.tree(text=newick1)
plot(tree1)
newick2 <- "((X:1.5,Y:1.5):3,Z:4.5);"
tree2 <- read.tree(text=newick2)
plot(tree2)

The first step consists in implementing a function endOfPeriodsGMM(tree1, tree2), which takes as input two trees (the trees corresponding to our two interacting clades), and returns :

- the list of successive branching times $\left(\tau_{i}\right)$ (vector periods),
- information on which branch gives birth at that time (vector copy),
- the number assigned to the newly created branch at that time (vector paste),
- the number of lineages in clade 1 and 2 at each time (vectors nLineages1 and nLineages2),
- the label of tips at the end (vector labeling).

For example, our function, called on the two preceding trees, returns :

In [246]: endOfPeriodsGMM(tree1, tree2)

Out [246]:
$\begin{array}{llllllll}\text { \$periods } & 0 & 1.5 & 2 & 3 & 4.5 & 5 & 6\end{array}$
$\begin{array}{llllllll}\$ c o p y & 1 & 3 & 1 & 3 & 5 & 1 & 0\end{array}$
$\left.\begin{array}{lllllll}\$ p a s t e & 2 & 4 & 3 & 4 & 7 & 5\end{array}\right)$
$\begin{array}{llllllll}\$ n L i n e a g e s 1 & 2 & 2 & 3 & 4 & 4 & 5 & 0\end{array}$
$\begin{array}{llllllll}\text { \$nLineages } 2 & 1 & 2 & 2 & 2 & 3 & 3 & 0\end{array}$
\$labeling 'A' 'E 'C 'D' 'B' 'X' 'Z' 'Y'

The second step now consists in writing the model in the vectorial form required in the framework, during each epoch i. The form of the a, A and Γ matrices is shown in Online Appendix C.4, and depends on the number of lineages in the two clades during each epoch.

We introduce the constructor createModelCoevolution(tree1, tree2), which is a function that takes as input two ultrametric trees corresponding to the two clades, and returns an object of class PhenotypicModel. It relies on the central function aAGamma that defines the collection of (a_{i}, A_{i}, Γ_{i}) during each epoch.

This first version of the GMM implementation allows us to simulate tip data, to get the tip distribution under any parameter set, and to fit tip data.

```
In [248]: modelGMMbis <- createModelCoevolution(tree1, tree2, keyword="GMMbis")
    modelGMMbis
```

Out [248]:
$* *$
*** Object of Class PhenotypicModel ***
*** Name of the model : [1] "GMMbis"
*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"
*** Description : Generalist Matching Mutualism model.
Starts with 3 or 4 lineages having the same value $X_{-} 0 \sim$ Normal(m0,v0).
One trait in each lineage, all lineages evolving then non-independtly
according to the GMM expression.
*** Periods : the model is cut into 7 parts.
For more details on the model, call : print(PhenotypicModel)

In [249]: dataGMM <- simulateTipData(modelGMMbis, $c(0,0,5,-5,1,1)$, method=2)
*** Simulation of tip trait values $* * *$
Simulates step-by-step the whole trajectory, plots it, and returns tip data.
Computation time : 0.319762 secs

Whole trajectory of trait evolution

653

In [250]: getTipDistribution(modelGMMbis, $c(0,0,5,-5,0.5,1))$ Out [250] :

A 2.493801
E 2.493801
C 2.493801
D 2.493801
\$mean

B	2.493801
X	-2.493801
Z	-2.493801
Y	-2.493801

In [252]: modelGMM <- createModelCoevolution(tree1, tree2, keyword="GMM") modelGMM

Out [252]:

$* *$
*** Object of Class PhenotypicModel ***
*** Name of the model : [1] "GMM"
*** Parameters of the model : [1] "m0" "v0" "d1" "d2" "S" "sigma"
*** Description : Generalist Matching Mutualism model.
Starts with 3 or 4 lineages having the same value $X_{-} 0 \sim \operatorname{Normal(m0,v0).~}$
One trait in each lineage, all lineages evolving then non-independtly
according to the GMM expression.
*** Periods : the model is cut into 7 parts.
For more details on the model, call : print(PhenotypicModel)
$* *$

In [253]: getTipDistribution(modelGMM, c(0,0,5,-5,0.5,1), v=TRUE) getTipDistribution(modelGMMbis, $c(0,0,5,-5,0.5,1)$, v=TRUE)
*** Analytical computation of tip traits distribution $* * *$
(Method working for the GMM model only)
Computation time : 0.0008528233 secs
However, this first implementation relies on the PhenotypicModel class, which uses the method getTipDistribution that solves the ODE system through each epoch, and thus takes time.

The analytical reduction presented in Online Appendix C. 4 can also be implemented. To this end, we create a new class named PhenotypicGMM, associated with an other function getTipDistribution. Using these developments allows us to compute more rapidly the tip distribution under the model.

Out [253]:

*** Computation of tip traits distribution through ODE resolution $* * *$
(Method working for any model)
Computation time : 0.01734638 secs

675 Out [253]:

676 \$mean

A	2.493801
E	2.493801
C	2.493801
D	2.493801
B	2.493801
X	-2.493801
Z	-2.493801
Y	-2.493801

		A	E	C	D	B	X	Z	Y
$\$$ A Sigma	2.196011	1.171214	1.215844	1.215844	1.563892	1.399735	1.341619	1.399735	
	1.171214	2.141458	1.172730	1.172730	1.171214	1.337713	1.279597	1.337713	
	C	1.215844	1.172730	2.199045	1.248832	1.215844	1.379237	1.321122	1.379237
	D	1.215844	1.172730	1.248832	2.199045	1.215844	1.379237	1.321122	1.379237
B	1.563892	1.171214	1.215844	1.215844	2.196011	1.399735	1.341619	1.399735	
X	1.399735	1.337713	1.379237	1.379237	1.399735	2.200083	1.190366	1.423215	
Z	1.341619	1.279597	1.321122	1.321122	1.341619	1.190366	2.158430	1.190366	
Y	1.399735	1.337713	1.379237	1.379237	1.399735	1.423215	1.190366	2.200083	

