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Supplementary Tables and Figures. Morphological data as well as the functional innovation 

and trophic guild classifications used in the study can be found in Supplementary File 1 (Excel 

format).  
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Table S1. Evolutionary models fit to locomotion and feeding performance traits.  

Trait Mode

l 

ln L AICc ΔAICc Prop. 

Fin Aspect Ratio BM 143.1 (126.7 – 149.4) -282.2 (-294.8 – -249.3) 0.0 0.962 

 EB 143.1 (126.7 – 149.4) -280.1 (-292.7 – -247.2) 2.1 0.000 

 delta 143.5 (130.1 – 149.5) -280.9 (-292.7 – -254.0) 1.3 0.000 

 OU 143.5 (131.1 – 149.4) -280.9 (-292.7 – -256.0) 1.3 0.038 

Gape BM 121.5 (88.7 – 138.6) -239.0 (-273.1 – -0.173.3) 2.0 0.015 

 EB 121.5 (88.7 – 138.6) -236.9 (-271.0 – -171.2) 4.1 0.000 

 delta 123.1 (89.6 – 139.1) -240.0 (-272.0 – -172.9) 1.0 0.000 

 OU 123.6 (89.9 – 139.0) -241.0 (-271.8 – -173.8) 0.0 0.985 

Protrusion BM -46.8 (-61.6 – -31.5) 97.7 (67.0 – 127.3) 28.8 0.000 

 EB -46.8 (-61.6 – -31.5) 99.8 (69.1 – 129.4) 30.9 0.000 

 delta -35.9 (-48.4 – -24.0) 78.0 (54.3 – 102.9) 9.1 0.000 

 OU -31.4 (-41.0 – -22.9) 68.9 (51.9 – 88.3) 0.0 1.000 

Adductor Mandibulae BM -12.2 (-40.1 – 7.4) 28.5 (-10.7 – 86.1) 22.0 0.000 

 EB -12.2 (-40.1 – 7.4) 30.6 (-8.5 – 88.2) 24.1 0.000 

 delta -3.2 (-31.3 – 12.7) 12.3 (-19.4 – 68.6) 5.8 0.000 

 OU -0.1 (-27.7 – -12.8) 6.5 (-19.4 – 61.6) 0.0 1.000 

Sternohyoideus BM 17.1 (-7.6 – -30.0) -30.2 (-55.9 – 19.4) 19.4 0.000 

 EB 17.1 (-7.6 – -30.0) -28.1 (-53.8 – 21.5) 21.5 0.000 

 delta 25.4 (5.6 – 35.4) -44.6 (-64.6 – -5.0 5.0 0.000 

 OU 27.9 (14.5 – 36.4) -49.6 (-66.6 – -22.9) 0.0 1.000 

Levator Posterior BM -76.0 (-88.3 – -67.5) 156.0 (139.2 – 180.7) 0.2 0.000 

 EB -76.0 (-88.3 – -67.5) 158.1 (141.3 – 182.8) 2.3 0.000 

 delta -74.8 (-84.8 – -67.1) 155.8 (140.5 – 175.8) 0.0 0.522 

 OU -75.1 (-84.8 – -67.5) 156.4 (141.2 – 175.7) 0.6 0.478 

Jaw Closing Lever BM 81.2 (50.9 – 114.9) -158.2 (-225.7 – 105.9) 15.7 0.000 

 EB 81.2 (50.9 – 114.9) -156.1 (-223.6 – 108.0) 17.8 0.000 

 delta 87.3 (28.0 – 115.2) -168.4 (-224.3 – 62.2) 5.5 0.000 

 OU 90.0 (9.8 – 115.4) -173.9 (-224.0 – -13.4) 0.0 1.000 

Jaw Opening Lever BM 101.6 (2.3 – 121.4) -199.0 (-238.7 – -0.5) 26.3 0.000 

 EB 101.6 (2.3 – 121.4) -196.9 (-236.6 – 1.6) 28.4 0.000 

 delta 111.7 (24.6 – 127.0) -217.1 (-247.8 – -43.0) 7.8 0.000 

 OU 115.7 (79.1 – 127.0) -225.3 (-247.8 – -151.9) 0.0 1.000 

Jaw KT BM 134.2 (126.1 – 138.9) -264.3 (-273.7 – -248.1) 5.3 0.000 

 EB 134.2 (126.1 – 138.9) -262.2 (-271.6 – -246.0) 7.4 0.000 

 delta 137.1 (131.1 – 140.9) -268.1 (-275.6 – -256.0) 1.5 0.000 

 OU 137.9 (132.6 – 141.3) -269.6 (-276.4 – -258.9) 0.0 1.000 

Hyoid KT BM -1.7 (-124.0 – 25.2) 7.5 (-48.2 – 252.1) 20.2 0.000 

 EB -1.7 (-124.0 – 25.2) 9.6 (-46.1 – 254.2) 22.3 0.000 

 delta 6.2 (-101.2 – 28.0) -6.2 (-49 – 208.5) 6.5 0.000 

 OU 9.4 (-28.0 – 28.3) -12.7 (-50.4 – 62.3) 0.0 1.000 

   

Values depict the mean (range) log-likelihood (lnL) and AICc and the mean difference in AICc scores 

(ΔAICc) across 1000 trees, and the proportion (Prop.) of trees in which the model was the best fit based 

on AICc scores.  
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Figure S1. Maximum clade credibility phylogenetic tree used in the paper (originally from 

Baliga and Law 2016) and that appears in Figures 2 and 4 of the main text.   
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Figure S2. Assessment of sensitivity to the prior number of shifts in speciation rates during 

analyses of diversification using TESS. The top panels depict net diversification through time 

(A) and Bayes Factor support for speciation rate shifts through time (B) based on a prior of one 

shift (i.e, the analyses that appear in the main text of the paper). The middle (C,D) and bottom 

(E,F) panels depict the same analyses except with the prior number of shifts changed to 5 and 10, 

respectively. Manipulating the prior created some periodicity in estimated net diversification 

through time (A,C,E), but did not affect support for rate shifts through time (B,D,F).  
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Figure S3. Plots demonstrating the scaling of trait values with body size. For the traits that scaled 

strongly with body size (i.e., the linear distances and masses), we performed phylogenetic size 

correction. 
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Figure S4. Histograms demonstrating the extreme jaw length (A) and body elongation (B) values 

observed in Gomphosus and Siphonognathus, respectively, used to justify treating these cases as 

discrete innovations. In both panels, the y-axis is the frequency (#) of species with that trait 

value. Data for jaw length and body elongation are based on species means of 104 and 70 

species, respectively. 
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Figure S5. Disparity through time plots based on the MCC tree, for the 10 traits included in the 

paper. See the main text for summary statistics from analyses across 1000 randomly sampled 

trees from the posterior distribution.  
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Figure S6. Node-height tests, based on the MCC tree, for the 10 traits included in the paper. Best 

fit lines depict significant relationships. See the main text for summary statistics from analyses 

across 1000 randomly sampled trees from the posterior distribution.  
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Supplementary Information 

 

LABRID TROPHIC CATEGORIES 

We established 10 trophic categories for labrids and placed each species from our phylogeny into 

one of these categories. We tried to use primary literature that described gut contents of field-

collected adult fish, and in some cases we relied on species accounts on fishbase or IUCN 

species descriptions. The diets of many labrids are famously diverse, often including 

representatives from many different phyla (Randall 1967; Hobson 1974). In order to be placed in 

a trophic category, at least 50% of the diet had to be from the category. The category names we 

used are given here with the major prey components that formed the categorical definition: 

Shelled Invertebrates: Included hard-shelled decopod crabs, brittlestars, gastropods and 

pelecypods; Soft-Shelled Invertebrates: polychaetes, unshelled crustacean such as isopods, 

amphipods, copepods, sipunculans, holothurians; Molluscs: shelled gastropod and pelecypods, 

sea urchins; Fish: fish, decopod shrimp and mysids; Zooplankton: copepods, larvaceans, crab 

larvae, salps, fish eggs; Herbivore: algae, detritus, bluegreen algae, sediment; Omnivore: plant 

material with at least 30% animal prey; Coral: mucus from scleractinian coral; Cleaner: gnathid 

copepods, other ectoparasites, fish mucus and bits of skin; Foraminifera: Foraminifera (at least 

25%), gastropods and pelecypods. 
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FUNCTIONAL INNOVATIONS 

We surveyed functional novelties of labrid fishes and determined the taxonomic 

distribution of the innovations across the group. Most of these innovations are decribed in the 

primary literature. 

Pharyngognathy. Pharyngognathy is derived condition of the pharyngeal jaw apparatus 

that involves fusion of the left and right ceratobranchial bones into a single lower pharyngeal jaw 

bone, a well-developed diarthrosis between the underside of the neurocranium and the dorsal 

surface of the upper pharyngeal jaw (fourth pharyngobranchial), and a continuous muscular sling 

that suspends the lower pharyngeal jaw from the neurocranium, providing a direct biting action 

(Liem and Greenwood 1981; Stiassny and Jensen 1981; Liem and Sanderson 1986). 

Pharyngognathy has evolved independently in at least five different groups of acanthomorph 

fishes (Wainwright et al. 2012) and enhances the ability of fish to handle prey that require 

intensive grinding, shell-cracking or crushing during processing (Liem and Sanderson 1986; 

Wainwright 1987). Across all pharyngognathous fishes, this trait has been shown to be 

associated with higher rates of the evolution of processing diets (McGee et al. 2015). 

Phyllodont dentition. This is a derived condition of tooth development in the lower 

pharyngeal jaw bone in which the teeth arise in stacks (Bellwood 1990; 1994). This condition of 

the lower pharyngeal teeth is found throughout hypsigenyine genera (Bellwood 1994). 
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Parrotfish pharyngeal jaw. All scarines plus Pseudodax possess a similar, derived 

condition of pharyngognathy that includes 12 individual synapomorphies (Bellwood 1994). 

These include modified phylodont dentition, an elongate articulation between the upper 

pharyngeals and the neurocranium, enlarged epibranchials that stabilize a wide anterior-posterior 

motion of the upper pharyngeals, and teeth arranged in distinct rows, and being added at the 

posterior margin of the dentigerous surface. The parrofish pharyngeal jaw is intimately related to 

their feeding behavior in which algal turfs and sediment are scraped from rocky surfaces and 

ground into a slurry before being swallowed (Clement et al. 2017). 

Incisiform teeth. In Pseudodax, the anterior teeth of the premaxilla are enlarged and 

laterally flattened into an incisor-like shape (Bellwood 1994). These teeth form the scraping 

surface of the oral jaws in Pseudodax, which scrapes turf algae from rocky surfaces. 

Folded lips. Species in the genera Labrichthys, Labropsis and Diproctacanthus possess 

lips with a highly folded epithelium that is richly endowed with mucus-secreting glands (Huertas 

and Bellwood 2018). 

Coalesced teeth of the premaxilla. The teeth of Odax and the parrotfish genera 

Sparisoma, Scarus, Chlorurus, Hipposcarus, Bolbometapon, and Cetoscarus are thickened and 

coalesce into a dental plate that gives the fish a beak-like jaw (Bellwood 1994). This fused and 

thickened toothed edge of the jaws is used to scrape rocky substrates to remove algae and 

detritus when feeding. 

Intra-mandibular jaw joint. In Scarus, Chlorurus and Hipposcarus, the articulation 

between the dentary and articular bones of the lower jaw forms a rotating joint (Bellwood 1994). 

This joint permits motion between the two bones, in addition to the joint between the quadrate 
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and articular, making the lower jaw double-jointed. The joint is thought to allow parrotfish to 

open the jaws wider than they would otherwise, and to modulate the orientation of the dentary, 

which may help fit the jaws to the uneven surface of the reef during their scraping behavior 

(Konow et al. 2008). 

Rotating quadrate. In Epibulus, the quadrate bone is elongate and the proximal end 

forms a rotating joint with the hymandibula. As the distal end forms a hinge joint with the 

articular bone, the splint-like quadrate permits extensive protrusion of the lower jaw, giving this 

suction feeding wrasse the most protrusible jaws ever reported in teleost fishes (Westneat and 

Wainwright 1989). 

Fin waving. Several species of Choerodon will wave their pectoral fin, generating a 

pulse of water flow that they use to spread sand and expose buried prey (Bernardi 2012; Cure et 

al. 2015).  

Highly elongate body shape. Among the temperate odacines, Siphonognathus 

argyrophanes has an exceptionally slender, elongate body shape. This species mimics the blades 

of seagrasses it lives among while hunting small, mobile invertebrate prey (MacArthur and 

Hyndes 2007; Mabuchi et al. 2007). 

Highly elongate jaws. The two species of Gomphosus possess highly elongate upper and 

jower jaws (Wainwright et al. 2004). In Hawaii, G. varius feeds extensively on small xanthid 

crabs that it takes from inside the tightly branching Pocillopora coral and other crevices on the 

reef (Hobson 1974), for which the elongate, forceps-like jaws are presumably well-adapted. The 

extent of reliance on crevice-dwelling xanthid crabs is greater in Gomphosus than closely related 

species of Thalassoma (Bellwood et al. 2006; Randall 1967; Hobson 1974). 
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Split lower lip. The cleaner wrasses of the genus Labroides all possess a midline split in 

the lower lip that exposes the teeth of the lower jaw ventrally. Species in this group swim across 

their client fish at a shallow angle, almost parallel to the surface of the client (Baliga et al. 2017). 

The split lip may facilitate access of the toothed jaws to the ectoparasite prey these fish remove 

from clients. 

Recurved teeth. Species of Anampses all possess anteriorly oriented, recurved canine 

teeth that do not point in the direction of jaw adduction (Wainwright et al. 2004). Canines in 

other wrasses are used extensively to grab prey in a fashion not possible in Anampses. The 

anteriorly oriented canines appear to be used to probe turf algae for the small amphipods and 

polychaetes that these species feed upon. 

Large pharyngeal tooth. Species of Macrophayrngodon have a single hypertrophied, 

oval mollariform tooth in the center of the lower paryngeal jaw (Randall 1978; Wainwright et al. 

2004). This appears to be used when crushing the foraminifera, gastropods and bivalves that 

species of this genus feed upon (Yamaoka 1978; Bellwood et al. 2006) in spite of their very 

small body size that rarely exceeds 125 mm (Randall 1978). 

Anti-freeze proteins. Cunner (Tautogolabrus aspersus) express type I antifreeze proteins 

in their body tissues (Hobbs et al. 2011). Anti freeze proteins bind with ice crystals, preventing 

their propagation and have evolved nuermous times in teleost fishes in assocaition with 

adaptation to extremely cold waters (Graham et al. 2013). Cunner are found along the eastern 

coast of North American from the Chesapeake bay region north to Newfoundland and Gulf of St. 

Lawrence in Canada.  
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