
Schueth et al. SM - S1 

 

The Probable Datum Method (PDM): A technique for estimating the age of origination or 1 

extinction of nannoplankton 2 

Jonathan D. Schueth, Klaus Keller, Timothy J. Bralower, and Mark E. Patzkowsky 3 

 4 

Supplementary Materials 5 

 6 

Nannofossil Preservation in the Water Column 7 

 As a basic test of the applicability of our piecewise water column preservation model, we 8 

parameterized the model (eqs. 2-4) with modern values for the Indian Ocean (Petersen and Prell 9 

1985).  Petersen and Prell (1985) also measured the % carbonate in the sediment at depth 10 

transects for the same area.  By plotting both their % carbonate values and our piecewise linear 11 

model, it is apparent our model approximates the trends in the data (Supplementary Figure 1).  12 

Because the model provides a realistic representation of the true data we conclude that it is an 13 

adequate representation of pelagic carbonate preservation. 14 

 15 
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Supplementary Figure 1. The model of water-column preservation as a function of depth (eqs. 2-16 

4) fit to modern values of carbonate preservation from the Indian Ocean (Petersen and Prell 17 

1985).  The depth of the lysocline, zλ, and the CCD, zccd are marked. 18 

 19 

Model-Data Residual Analysis 20 

We fit our logistic model to abundance data by minimizing the sum of squares between 21 

the model and observations.  Fitting a model with sum of squares relies on the assumption that 22 

the residuals are uncorrelated and that the variance of the data is homoscedastic.  We observed 23 

autocorrelation in the residuals in some model fits, shown with a partial autocorrelation function 24 

of the residuals constructed with the with the “pacf” command in R (Supplementary Figure 2).  25 

In some cases our abundance data also exhibits heteroscedasticity in which the variance in the 26 

data increases as the magnitude of the data increases (e.g., Hageman 1992).  The 27 

heteroscedasticity becomes apparent as a linear correlation between the absolute value of the 28 

residuals (data – model; eq. 11) and the count abundance (Supplementary Figure 3).  We correct 29 

for the heteroscedasticity as described in the main text. 30 

 31 

 32 

Supplementary Figure 2 (page S4).   Partial autocorrelation functions (pacfs) of the residuals 33 

(data – model fit) for the K/Pg data at both Shatsky Rise and Walvis Ridge.  The blue dashed 34 

lines represent the levels above which correlations are statistically significant.  Some residual 35 

timeseries exhibit strong lag-1 autocorrelations (AR1).  36 

 37 

 38 
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 39 

Supplementary Figure 3 (page S5).   Plots of count abundance vs. the absolute value of the 40 

residuals (data - model fit) for the K/Pg data at both Shatsky Rise and Walvis Ridge.  The 41 

original data is from Bown (2005), Bernaola and Monechi (2007), and Jiang et al. (2010).  42 

Strong linear relationships between the count abundance and the absolute value of the residuals 43 

suggest strong heteroscedasticity in the data.  Some data exhibit this more clearly than others.  44 

45 
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Supplementary Figure 2 46 

 47 
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Supplementary Figure 3 48 

 49 

 50 

 51 

 52 



Schueth et al. SM - S6 

 

Justification for the Frequentist Approach of the PDM 53 

 The PDM utilizes a frequentist approach to determine the likely age of true origination or 54 

extinction.  We acknowledge that a Bayesian method would be more consistent and likely more 55 

powerful,  For example, our frequentist approach does not well account for prior information 56 

about the parameters (e.g., Box and Tiao 1992:  pg 72; Jaynes 2003: pg. 550).  However, 57 

Bayesian methods are typically computationally and conceptually more complex compared to a 58 

frequentist approach (e.g., D’Agostini 2003: pg. 169).  Therefore, while a Bayesian approach 59 

would provide more robust and provide more statistically sound results, our sampling method 60 

more easily obtains an estimate of the probability distribution for an unknown fixed parameter, 61 

such as the datum age to.  Frequentist approaches can provide adequate approximations in 62 

problems with few parameters, in large datasets, or if probability distributions for parameters are 63 

normal or close to normal (e.g., Box and Tiao 1992: pg. 80-86; Jaynes: 2003 pg. 550; D’Agostini 64 

2003: pg. 39).  We are careful, however, to describe our parameter histograms as approximating 65 

the probability distribution for a fixed, unknown parameter, rather than probability distribution of 66 

the parameter, as was suggested by Jaynes (2003: pg. 108). 67 

 68 

Positive Control Appendix 69 

 Our positive control experiment is described in the main text.  We set all parameters to 70 

approximate a real nannofossil dataset (Supplementary Table 1) then generated a simulated 71 

timeseries from these parameters by adding autocorrelated residual noise to the model (eq. 11).  72 

We first tested whether the bootstrap sampling of model residuals retained the autocorrelated 73 

structure.  Residuals were bootstrap sampled with the Maximum Entropy bootstrap with the 74 

meboot package in R (Vinod and López-de-Lacalle 2009), and we determined the partial 75 



Schueth et al. SM - S7 

 

autocorrelation function (pacf) in R for both the original and resampled residuals.  The 76 

resampled residuals have a similar pacf, showing the structure is retained in the bootstrap 77 

(Supplementary Figure 4).   78 

 79 

Supplementary Table 1: Logistic model (eq. 11) parameters chosen for the positive control 80 

experiment.  These values are set and assumed true, but should approximate real nannofossil 81 

count abundance data. 82 

Parameter Given Value 

to 0 Kyr 

Nmax 50 

λS 0.01 

λT -0.01 

S 700 Kyr 

T 1500 Kyr 

 83 

  84 
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 86 

Supplementary Figure 4.  Residual bootstrapping positive control.  Here we show the result of 87 

1000 bootstrapped samples of the residuals done with the meboot package in R (Vinod and 88 

López-de-Lacalle 2009).  The pacf of the original residuals is compared to the pacf of the 89 

bootstrapped residuals to show the autocorrelated structure is retained in the bootstrap. 90 

 91 

The logistic model was fit with surrogate data constructed with the bootstrapped residuals 92 

as described in the main text.  We also fit the model with a generalized nonlinear least squares 93 

(gnls) algorithm provided in the “nmle” package in R (Pinheiro et al. 2013).  The use of the gnls 94 

adds another source of positive control; if both methods provide the same or similar results, we 95 

can be more confident that our method is valid.  The gnls estimated both parameter values and 96 

95% confidence limits.  We compare these to box plots of the model parameters determined with 97 

our bootstrap routine for the five-parameter growth and decay model (Supplementary Figure 5).  98 
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Both the gnls and our bootstrap method provide similar results for the model parameters, and 99 

both adequately approximate the given values (Supplementary Table 1). 100 

 101 

 102 

Supplementary Figure5.  Boxplots of parameter estimation of the five-parameter model (eq. 11) 103 

fit with the bootstrapped residual routine.  Overlaid on the boxplots are:  blue line—given value 104 

(Supplementary Table 1), red line—gnls result, green lines—gnls 95% confidence limits.  Note 105 

that the bootstrapped residual technique provides similar results to the gnls and both approximate 106 

the given value. 107 

 108 

We also show the correlation of parameters estimated from the bootstrapped model fits 109 

(Supplementary Figure 6).  These scatterplots are superimposed with parameter 99% confidence 110 

limits generated from the gnls algorithm using the “car” package in R (Fox and Weisberg 2011).  111 

Once again both methods provide similar results, although in some cases the bootstrap technique 112 

results in a wider range of possible parameter values.  This could be a result of the model being 113 

fit to bootstrapped surrogate data rather than the original data.   114 

 115 
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 117 

 118 

Supplementary Figure 6 (page S11).  Correlation of parameters in the five-parameter model (Eq. 119 

11).  Each red point represents one bootstrapped model fit out of the total 1000 bootstrapped 120 

samples.  The green dot shows the mean value of the bootstrapped model fits, and the orange dot 121 

shows the median result.  The blue dot represents the gnls result with the blue ellipse 122 

representing the gnls 99% confidence limit for the parameter.  The given value (Supplementary 123 

Table 1) is shown with the black dot. 124 

  125 
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Finally, we compare the end result of the PDM between models fit with the bootstrap 129 

technique and the gnls by presenting the probability distributions for the age of origination, to 130 

(Supplementary Figure 7).  The histograms are very similar between results generated with 131 

bootstrapped technique and the gnls routine, and both methods provide histograms with median 132 

values near to the given value of to = 0.  The PDM accurately returns both the model parameters 133 

and the true age of origination or extinction for the positive control case.  This strengthens our 134 

confidence in the method applied to real data. 135 

 136 

Supplementary Figure 7.  The histograms of the calculated true age of origination, to, in the 137 

positive control experiment for both the bootstrapped routine and the gnls model fit.  In all cases 138 

the results are returning results close to the given value of zero.  Both the bootstrap technique 139 

and gnls provide similar results.  This result shows the PDM adequately returns given values in a 140 

positive control experiment. 141 

 142 

PDM Sensitivity to Parameter Change 143 

 We assessed the sensitivity of PDM results to changes in several key parameters.  This 144 

was to both investigate the robustness of the method and to determine if some parameters that 145 

would be labor intensive to assess, such as the false positive/negative rates, were absolutely 146 
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necessary to obtain meaningful results.  Each test was run on the origination of Coccolithus at 147 

Shatsky Rise (ODP Site 1210).  All results are shown and explained in Supplemental Figures 8-148 

10. 149 

 150 

Supplemental Figure 8. Histograms of true datum age showing the sensitivity of the PDM to 151 

changing the rates of false positive and false negative errors.  Note that removing completely 152 

changes the results only slightly.  It is therefore possible to safely assume these rates are equal to 153 

zero and still obtain meaningful results from the PDM. 154 

 155 
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 156 

Supplemental Figure 9. Histograms of true datum age showing the sensitivity of the PDM the 157 

sensitivity of the PDM to changing the “cutoff” vector from < 2 x 10-6,4 x 10-6> to a lower value, 158 

< 2 x 10-5,4 x 10-5>.  This makes the result more uncertain and provides a larger 95% 159 

confidences interval.  We explain why the original vector was chosen in the main text. 160 

 161 
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 162 

Supplemental Figure 10. Histograms of true datum age showing the sensitivity of the PDM the 163 

sensitivity of the PDM to changing the value of the taxon-specific dissolution factor α.  Changes 164 

in this value do cause major changes in results.  If α gets larger than 5, the results become very 165 

underconfident.  We therefore recommend keeping the maximum value of α below 5. 166 

 167 

PDM Comparison to SAS Method 168 

 We compared the PDM results generated from Coccolithus at ODP Site 1210 (see main 169 

text) to confidence limits generated by the SAS method.  We ran the SAS both as described by 170 
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Marshall (1990) and Marshall (1994).  The result is shown in Supplemental Figure 11.  The 171 

PDM generates much more conservative results and provides a larger range of uncertainty in the 172 

position of the true datum age.  We therefore feel this indicates the PDM provides a more 173 

statistically sound result, at least for our data, than the SAS method. 174 

 175 

Supplemental Figure 11. The PDM result, a histogram of determined values of the true 176 

origination age of Coccolithus at Shatsky Rise compared to the confidence intervals produced by 177 

the SAS method for both the technique described by Marshall (1990) and Marshall (1994).  Note 178 

that the confidence intervals actually more closely match the median results of the PDM, and the 179 

PDM result is much less confident.   This is likely due to our very small sample spacing and 180 

relatively large dataset. 181 

 182 

K/Pg Example Parameterization 183 

We explain some of the model parameterization in the main text.  Other parameters used 184 

for the K/Pg dataset were taken from the literature (see main text).  Here we list all of the 185 

parameter values or ranges that were used (Supplementary Table 2).  We also list the values for 186 
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α, the taxon-specific dissolution factor (Supplementary Table 3) derived from Thierstein (1980) 187 

rescaled from 0 to a maximum of 2.6.  We used the values of the experimental determination of 188 

the false positive and negative error rates in this example.  189 

 190 

Supplementary Table 2.  Values of parameters used in the K/Pg example shown for Shatsky Rise 191 

and Walvis Ridge.  Data references are: (1) ODP Shipboard Scientific Party (2002); (2) ODP 192 

Shipboard Scientific Party (2004); (3) Thierstein (1979).  193 

Parameter Shatsky Rise value/range Walvis Ridge value/range 

Paleodepth (km) 1.5-2.01 2.0-2.32 

%CaCO3-lysocline 0.793 0.803 

%CaCO3-CCD 0.023 0.053 

Depth of lysocline (km) 1.93 3.63 

Depth of CCD (km) 3.83 4.23 

 194 

Supplementary Table 3.  Values for the taxon-specific dissolution factor α.  These values are 195 

rescaled from original values given by Thierstein (1980) so that maximum susceptibility has a 196 

value of α = 2.6 and the minimum is α = 0.  197 

Taxon α value 

Coccolithus 0.4 

Cr. intermedius 0.4 

Cr. primus 2.6 

Futyania 0.6 

Neobiscutum 0.6 

Prinsius 0.6 

 198 

 199 

Supplement for the p(synchronous) Test between Shatsky Rise and Walvis Ridge. 200 

 The synchrony test results are given in Table 2 in the main text.  These values were 201 

determined by sampling the probability distributions for to for Walvis Ridge and Shatsky Rise 202 
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1000 times in a Monte Carlo approach.  Differences were then taken between these samples, and 203 

the proportion of the sampled differences that are less than our minimum allowable synchronous 204 

age (100 Kyr, see main text).  If a certain value of p(synchronous), say 5%, is reached then we 205 

could safely assess the datums as being truly diachronous between locations.   The histograms of 206 

sampled differences for all six taxa studied in our K/Pg application are shown in Supplemental 207 

Figure 12. 208 

  209 

Supplementary Figure 12.  The sampled difference histograms that approximate the probability 210 

distribution for the true difference in the age of origination of the six taxa used in the K/Pg 211 

example between Shatsky Rise and Walvis Ridge (see Main Text).  The red line represents the 212 
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age difference of 100 Kyr, the maximum allowable age difference for the origination to be 213 

considered synchronous.    214 
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