Skip to main content
Dryad

Data from: Adrenomedullin-RAMP2 and -RAMP3 systems regulate cardiac homeostasis during cardiovascular stress

Data files

Jan 19, 2021 version files 1.49 MB
Apr 22, 2021 version files 3.29 MB

Click names to download individual files

Abstract

Adrenomedullin (AM) is a peptide hormone with multiple physiological functions, which are regulated by its receptor activity-modifying proteins, RAMP2 and RAMP3. We previously reported that AM or RAMP2 knockout (AM-/-, RAMP2-/-) is embryonically lethal in mice, whereas RAMP3-/- mice are apparently normal. AM, RAMP2 and RAMP3 are all highly expressed in the heart; however, their functions there are not fully understood. Here, we analyzed the pathophysiological functions of the AM-RAMP2 and AM-RAMP3 systems in hearts subjected to cardiovascular stress.

Cardiomyocyte-specific RAMP2-/- (C-RAMP2-/-) and RAMP3-/- showed no apparent heart failure at base line. After one week of transverse aortic constriction (TAC), however, C-RAMP2-/- exhibited significant cardiac hypertrophy, decreased ejection fraction and increased fibrosis as compared to wild-type mice. Both dP/dtmax and dP/dtmin were significantly reduced in C-RAMP2-/-, indicating reduced ventricular contractility and relaxation. Exposing C‑RAMP2‑/- cardiomyocytes to isoproterenol enhanced their hypertrophy and oxidative stress as compared to wild-type cells. C‑RAMP2‑/- cardiomyocytes also contained fewer viable mitochondria and showed reduced mitochondrial membrane potential and respiratory capacity. RAMP3-/- also showed reduced systolic function and enhanced fibrosis after TAC, but those only became apparent after 4 weeks. A reduction in cardiac lymphatic vessels was the characteristic feature in RAMP3-/-.

These observations indicate the AM-RAMP2 system is necessary for early adaptation to cardiovascular stress through regulation of cardiac mitochondria. AM-RAMP3 is necessary for later adaptation through regulation of lymphatic vessels. The AM-RAMP2 and AM-RAMP3 systems thus play separate critical roles in the maintenance of cardiovascular homeostasis against cardiovascular stress.