Skip to main content
Dryad

Branching patterns in phylogenies cannot distinguish diversity-dependent diversification from time-dependent diversification

Data files

Oct 20, 2020 version files 700.13 MB

Click names to download individual files

Abstract

One of the primary goals of macroevolutionary biology has been to explain general trends in long-term diversity patterns, including whether such patterns correspond to an up-scaling of processes occurring at lower scales. Reconstructed phylogenies often show decelerated lineage accumulation over time. This pattern has often been interpreted as the result of diversity-dependent diversification, where the accumulation of species causes diversification to decrease through niche filling. However, other processes can also produce such a slowdown, including time-dependence without diversity-dependence. To test whether phylogenetic branching patterns can be used to distinguish these two mechanisms, we formulated a time-dependent, but diversity-independent model that matches the expected diversity through time of a diversity-dependent model. We simulated phylogenies under each model and studied how well likelihood methods could recover the true diversification mode. Standard model selection criteria always recovered diversity-dependence, even when it was not present. We correct for this bias by using a bootstrap method and find that neither model is decisively supported. This implies that the branching pattern of reconstructed trees contains insufficient information to detect the presence or absence of diversity-dependence. We advocate that tests encompassing additional data, e.g., traits or range distributions, are needed to evaluate how diversity drives macroevolutionary trends.