Skip to main content
Dryad

Pulmonary function with expiratory resistive loading in healthy volunteers

Data files

Jun 07, 2021 version files 18.92 KB

Click names to download individual files

Abstract

Expiratory flow limitation is a key characteristic in obstructive pulmonary diseases. To study abnormal lung mechanics isolated from heterogeneities of obstructive disease, we measured pulmonary function in healthy adults with expiratory loading. Thirty-seven volunteers (25±5 yr) completed spirometry and body plethysmography under control and threshold expiratory loading of 7, 11 cmH2O, and a subset at 20 cmH2O (n=11). We analyzed the shape of the flow-volume relationship with rectangular area ratio (RAR; Ma et al., Respir Med 2010). Airway resistance was increased (p<0.0001) with 7 and 11 cmH2O loading vs control (9.20±1.02 and 11.76±1.68 vs. 2.53± 0.80 cmH2O/L/s). RAR was reduced (p=0.0319) in loading vs control (0.45±0.07 and 0.47±0.09L vs. 0.48±0.08). FEV1 was reduced (p<0.0001) in loading vs control (3.24±0.81 and 3.23±0.80 vs. 4.04±1.05 L). FVC was reduced (p<0.0001) in loading vs control (4.11±1.01 and 4.14±1.03 vs. 5.03±1.34 L). Peak expiratory flow (PEF) was reduced (p<0.0001) in loading vs control (6.03±1.67 and 6.02±1.84 vs. 8.50±2.81 L/s). FEV1/FVC (p<0.0068) was not clinically significant and FRC (p=0.4) was not different in loading vs control. Supra-physiologic loading at 20 cmH2O did not result in further limitation. Expiratory loading reduced FEV1, FVC, PEF, but there were no clinically meaningful differences in FEV1/FVC, FRC, or RAR. Imposed expiratory loading likely leads to high airway pressures that resist dynamic airway compression. Thus, a concave expiratory flow-volume relationship was consistently absent – a key limitation for model comparison with pulmonary function in COPD. Threshold loading may be a useful strategy to increase work of breathing or induce dynamic hyperinflation.