Skip to main content
Dryad

Sepsis restructures the mitochondrial calcium uniporter complex in the lymphoid tissues of mice and humans

Abstract

Survivors of sepsis suffer from an elevated risk of premature death that is not explained by a higher burden of chronic diseases prior to the infection. Nearly 1 out of 4 survivors have persistent elevations of inflammation biomarkers, such as interleukin (IL) 6. These observations suggest that sepsis imparts durable changes to organismal biology. Eukaryotic life depends upon ATP and calcium (Ca2+). During sepsis, mitochondrial dysfunction, a failure of Ca2+ homeostasis, and sustained elevations in cytosolic [Ca2+] occur. These insults may serve as sufficient pressure to select for cells uniquely able to adapt. In this study, we compare the spleen and bone marrow lymphoid tissues of murine and human survivors of intraabdominal sepsis and non-sepsis critical illness (i.e., sterile trauma). We observe that sepsis induces in lymphoid tissues a restructuring of the mitochondrial calcium uniporter (MCU) complex: the critical channel mediating the electrophoretic uptake of Ca2+ into the mitochondrion. We show these changes persist after clinical resolution of sepsis and lead to alterations in mitochondrial Ca2+ regulation, Ca2+ signaling, oxidative metabolism, and sensitivity to programmed cell death pathways. These biochemical changes manifest as fundamental alterations in phenotype: i.e., heightened systemic IL-6 concentration. Inhibiting lysosomal pathways partially restores the MCU complex stoichiometry, mitochondrial Ca2+ homeostasis, and lymphoid tissue phenotype to a sepsis naïve state.