Skip to main content
Dryad

DeepInMiniscope: Deep-learning-powered physics-informed integrated miniscope

Data files

Aug 06, 2025 version files 4.27 GB

Click names to download individual files

Abstract

Mask-based integrated fluorescence microscopy is a compact imaging technique for biomedical research. It can perform snapshot 3D imaging through a thin optical mask with a scalable field of view (FOV) and a thin device thickness. Integrated microscopy uses computational algorithms for object reconstruction, but efficient reconstruction algorithms for large-scale data have been lacking. Here, we developed DeepInMiniscope, a miniaturized integrated microscope featuring a custom-designed optical mask and a multi-stage physics-informed deep learning model. This reduces the computational resource demands by orders of magnitude and facilitates fast reconstruction. Our deep learning algorithm can reconstruct object volumes over 4×6×0.6 mm3. We demonstrated substantial improvement in both reconstruction quality and speed compared to traditional methods for large-scale data. Notably, we imaged neuronal activity with near-cellular resolution in awake mouse cortex, representing a substantial leap over existing integrated microscopes. DeepInMiniscope holds great promise for scalable, large-FOV, high-speed, 3D imaging applications with compact device footprint.