Skip to main content
Dryad

An ensemble machine learning bioavailable strontium isoscape for Eastern Canada

Data files

May 12, 2025 version files 634.43 MB

Click names to download individual files

Abstract

Bioavailable strontium isotope ratios (87Sr/86Sr) distribution across the landscape mainly follow the underlying lithology, making 87Sr/86Sr baseline maps (isoscapes) powerful tools for provenance studies. 87Sr/86Sr has already been used in Eastern Canada (EC) to track food and human remains origins, or to reconstruct animal mobility. While bioavailable 87Sr/86Sr isoscapes for EC can be extrapolated from global datasets using random forest modelling (RF), no regionally-calibrated isoscape exists. Here, we produce a regionally-calibrated bioavailable 87Sr/86Sr isoscape by analysing plants collected at 136 sites across EC, incorporating updated geological variables and applying a novel ensemble machine-learning (EML) framework. We generated and compared isoscapes generated by the traditional RF and the EML approaches. Adding local bioavailable 87Sr/86Sr to a global dataset significantly improved the model prediction with a drastic increase of predicted 87Sr/86Sr and increased spatial uncertainty in the northern Canadian craton. EML produced similar 87Sr/86Sr predictions but with tighter spatial uncertainty distribution. Regionally-calibrated RF and EML isoscapes significantly outperformed the global bioavailable RF isoscape, confirming the requirement for collecting local data in data-poor regions. This isoscape provides a baseline in EC to monitor and manage the movements and provenance of agricultural products, natural resources, endangered/harmful migratory species, and archaeological human remains and artifacts.