Skip to main content
Dryad

An ensemble machine learning bioavailable strontium isoscape for Eastern Canada

Data files

May 12, 2025 version files 634.43 MB

Abstract

Bioavailable strontium isotope ratios (87Sr/86Sr) distribution across the landscape mainly follow the underlying lithology, making 87Sr/86Sr baseline maps (isoscapes) powerful tools for provenance studies. 87Sr/86Sr has already been used in Eastern Canada (EC) to track food and human remains origins, or to reconstruct animal mobility. While bioavailable 87Sr/86Sr isoscapes for EC can be extrapolated from global datasets using random forest modelling (RF), no regionally-calibrated isoscape exists. Here, we produce a regionally-calibrated bioavailable 87Sr/86Sr isoscape by analysing plants collected at 136 sites across EC, incorporating updated geological variables and applying a novel ensemble machine-learning (EML) framework. We generated and compared isoscapes generated by the traditional RF and the EML approaches. Adding local bioavailable 87Sr/86Sr to a global dataset significantly improved the model prediction with a drastic increase of predicted 87Sr/86Sr and increased spatial uncertainty in the northern Canadian craton. EML produced similar 87Sr/86Sr predictions but with tighter spatial uncertainty distribution. Regionally-calibrated RF and EML isoscapes significantly outperformed the global bioavailable RF isoscape, confirming the requirement for collecting local data in data-poor regions. This isoscape provides a baseline in EC to monitor and manage the movements and provenance of agricultural products, natural resources, endangered/harmful migratory species, and archaeological human remains and artifacts.