Post-processed data for: Dopamine D1 receptor activation in the striatum is sufficient to drive reinforcement of anteceding cortical patterns
Data files
Oct 09, 2024 version files 75.69 GB
-
df_all.parquet
3.26 KB
-
df_CONTROL_AGO_simulations.parquet
10.32 KB
-
df_CONTROL_AGO.parquet
7.36 KB
-
df_CONTROL_LIGHT_simulations.parquet
10.48 KB
-
df_CONTROL_LIGHT.parquet
7.58 KB
-
df_CONTROL_simulations.parquet
10.22 KB
-
df_CONTROL.parquet
7.19 KB
-
df_D1act_simulations.parquet
11.93 KB
-
df_D1act.parquet
12.07 KB
-
df_DELAY_simulations.parquet
10.29 KB
-
df_DELAY.parquet
7.56 KB
-
df_FA_SA.parquet
3.78 KB
-
df_learning_posthoc.parquet
102.92 KB
-
df_learning.csv
52.78 KB
-
df_motion_controls.parquet
28.24 KB
-
df_motion.parquet
40.40 KB
-
df_occupancy_ratios_hitbased.parquet
49.56 KB
-
df_occupancy_ratios.parquet
46.62 KB
-
df_occupancy.parquet
26.23 KB
-
df_RANDOM_simulations.parquet
10.82 KB
-
df_RANDOM.parquet
8.52 KB
-
df_rcv.csv
1.04 MB
-
df_snr.parquet
5.13 KB
-
df_SOT_line.csv
513.82 KB
-
distance_direct_neurons.parquet
11.26 KB
-
m13_221112_D01_bmi.zip
44.50 MB
-
m13_221112_D01_suite2p.zip
3.41 GB
-
m13_221113_D02_bmi.zip
54.96 MB
-
m13_221113_D02_suite2p.zip
1.88 GB
-
m13_221114_D03_bmi.zip
44.64 MB
-
m13_221114_D03_suite2p.zip
967.57 MB
-
m13_221116_D05_bmi.zip
47.20 MB
-
m13_221116_D05_suite2p.zip
697.16 MB
-
m13_221117_D06_bmi.zip
22.01 MB
-
m13_221117_D06_suite2p.zip
327.62 MB
-
m16_221112_D01_bmi.zip
45.44 MB
-
m16_221112_D01_suite2p.zip
908.91 MB
-
m16_221113_D02_bmi.zip
73.68 MB
-
m16_221113_D02_suite2p.zip
667.62 MB
-
m16_221114_D03_bmi.zip
38.54 MB
-
m16_221114_D03_suite2p.zip
453.97 MB
-
m16_221115_D04_bmi.zip
42.38 MB
-
m16_221115_D04_suite2p.zip
379.32 MB
-
m16_221116_D05_bmi.zip
58.02 MB
-
m16_221116_D05_suite2p.zip
681.30 MB
-
m16_221118_D07_bmi.zip
52.51 MB
-
m16_221118_D07_suite2p.zip
611.06 MB
-
m16_221119_D08_bmi.zip
79.94 MB
-
m16_221119_D08_suite2p.zip
867.38 MB
-
m18_221112_D01_bmi.zip
36.05 MB
-
m18_221112_D01_suite2p.zip
396.11 MB
-
m18_221113_D02_bmi.zip
38.12 MB
-
m18_221113_D02_suite2p.zip
515.64 MB
-
m18_221114_D03_bmi.zip
44.31 MB
-
m18_221114_D03_suite2p.zip
450.18 MB
-
m18_221115_D04_bmi.zip
33.93 MB
-
m18_221115_D04_suite2p.zip
194.42 MB
-
m18_221116_D05_bmi.zip
43.40 MB
-
m18_221116_D05_suite2p.zip
570.46 MB
-
m18_221117_D06_bmi.zip
38.65 MB
-
m18_221117_D06_suite2p.zip
477.85 MB
-
m18_221118_D07_bmi.zip
54.95 MB
-
m18_221118_D07_suite2p.zip
369.92 MB
-
m18_221119_D08_bmi.zip
79.14 MB
-
m18_221119_D08_suite2p.zip
381.11 MB
-
m21_230406_D01_bmi.zip
71.95 MB
-
m21_230406_D01_suite2p.zip
516.49 MB
-
m21_230407_D02_bmi.zip
75.21 MB
-
m21_230407_D02_suite2p.zip
631.98 MB
-
m21_230408_D03_bmi.zip
73.80 MB
-
m21_230408_D03_suite2p.zip
762.23 MB
-
m21_230412_D04_bmi.zip
77.55 MB
-
m21_230412_D04_suite2p.zip
363.96 MB
-
m21_230413_D05_bmi.zip
73.39 MB
-
m21_230413_D05_suite2p.zip
593.24 MB
-
m21_230414_D06_bmi.zip
71.21 MB
-
m21_230414_D06_suite2p.zip
452.34 MB
-
m21_230415_D07_bmi.zip
73.50 MB
-
m21_230415_D07_suite2p.zip
443.99 MB
-
m21_230416_D08_bmi.zip
75.05 MB
-
m21_230416_D08_suite2p.zip
495.54 MB
-
m21_230417_D09_bmi.zip
83.09 MB
-
m21_230417_D09_suite2p.zip
562.33 MB
-
m21_230418_D10_bmi.zip
79.13 MB
-
m21_230418_D10_suite2p.zip
472.05 MB
-
m21_230419_D11_bmi.zip
75 MB
-
m21_230419_D11_suite2p.zip
1.48 GB
-
m21_230420_D12_bmi.zip
76.76 MB
-
m21_230420_D12_suite2p.zip
1.08 GB
-
m21_230421_D13_bmi.zip
70.65 MB
-
m21_230421_D13_suite2p.zip
1.58 GB
-
m21_230422_D14_bmi.zip
79.12 MB
-
m21_230422_D14_suite2p.zip
561.53 MB
-
m22_230413_D02_bmi.zip
74.20 MB
-
m22_230413_D02_suite2p.zip
863 MB
-
m22_230414_D03_bmi.zip
67.92 MB
-
m22_230414_D03_suite2p.zip
502.44 MB
-
m22_230415_D04_bmi.zip
77.91 MB
-
m22_230415_D04_suite2p.zip
516.13 MB
-
m22_230416_D05_bmi.zip
72.76 MB
-
m22_230416_D05_suite2p.zip
1.39 GB
-
m22_230417_D06_bmi.zip
57.90 MB
-
m22_230417_D06_suite2p.zip
952.85 MB
-
m22_230418_D07_bmi.zip
68.33 MB
-
m22_230418_D07_suite2p.zip
600.05 MB
-
m22_230419_D08_bmi.zip
74.11 MB
-
m22_230419_D08_suite2p.zip
813.89 MB
-
m22_230420_D09_bmi.zip
67.41 MB
-
m22_230420_D09_suite2p.zip
822.92 MB
-
m22_230422_D10_bmi.zip
69.93 MB
-
m22_230422_D10_suite2p.zip
1.35 GB
-
m22_230423_D11_bmi.zip
70.60 MB
-
m22_230423_D11_suite2p.zip
513.27 MB
-
m22_230424_D12_bmi.zip
69.30 MB
-
m22_230424_D12_suite2p.zip
2.22 GB
-
m23_230418_D01_bmi.zip
74.87 MB
-
m23_230418_D01_suite2p.zip
1 GB
-
m23_230419_D02_bmi.zip
77.38 MB
-
m23_230419_D02_suite2p.zip
1.45 GB
-
m23_230420_D03_bmi.zip
75.55 MB
-
m23_230420_D03_suite2p.zip
1.89 GB
-
m23_230421_D04_bmi.zip
76.83 MB
-
m23_230421_D04_suite2p.zip
1.48 GB
-
m23_230422_D05_bmi.zip
71.19 MB
-
m23_230422_D05_suite2p.zip
1.24 GB
-
m23_230423_D06_bmi.zip
73.67 MB
-
m23_230423_D06_suite2p.zip
1.33 GB
-
m23_230424_D07_bmi.zip
78.65 MB
-
m23_230424_D07_suite2p.zip
804.20 MB
-
m25_230425_D11_bmi.zip
57.82 MB
-
m25_230425_D11_suite2p.zip
522.53 MB
-
m26_230407_D02_bmi.zip
77.53 MB
-
m26_230407_D02_suite2p.zip
540.39 MB
-
m26_230408_D03_bmi.zip
73.12 MB
-
m26_230408_D03_suite2p.zip
795.87 MB
-
m26_230412_D04_bmi.zip
74.83 MB
-
m26_230412_D04_suite2p.zip
580.27 MB
-
m26_230413_D05_bmi.zip
72.27 MB
-
m26_230413_D05_suite2p.zip
554.14 MB
-
m26_230414_D06_bmi.zip
82.76 MB
-
m26_230414_D06_suite2p.zip
569.98 MB
-
m26_230415_D07_bmi.zip
78.06 MB
-
m26_230415_D07_suite2p.zip
384.19 MB
-
m26_230416_D08_bmi.zip
72.75 MB
-
m26_230416_D08_suite2p.zip
436.13 MB
-
m26_230417_D09_bmi.zip
71.69 MB
-
m26_230417_D09_suite2p.zip
458.59 MB
-
m26_230418_D10_bmi.zip
67.66 MB
-
m26_230418_D10_suite2p.zip
557.64 MB
-
m26_230425_D11_bmi.zip
68.92 MB
-
m26_230425_D11_suite2p.zip
766.21 MB
-
m27_230406_D01_bmi.zip
76.22 MB
-
m27_230406_D01_suite2p.zip
831.65 MB
-
m27_230414_D02_bmi.zip
74.68 MB
-
m27_230414_D02_suite2p.zip
518.77 MB
-
m27_230415_D03_bmi.zip
72.20 MB
-
m27_230415_D03_suite2p.zip
559.39 MB
-
m27_230424_D02_bmi.zip
69.16 MB
-
m27_230424_D02_suite2p.zip
1.20 GB
-
m28_230406_D01_bmi.zip
79.49 MB
-
m28_230406_D01_suite2p.zip
549.07 MB
-
m28_230407_D02_bmi.zip
77.83 MB
-
m28_230407_D02_suite2p.zip
1.39 GB
-
m28_230408_D03_bmi.zip
84.66 MB
-
m28_230408_D03_suite2p.zip
725.97 MB
-
m28_230412_D04_bmi.zip
59.12 MB
-
m28_230412_D04_suite2p.zip
443.60 MB
-
m28_230413_D05_bmi.zip
86.27 MB
-
m28_230413_D05_suite2p.zip
883.58 MB
-
m28_230414_D06_bmi.zip
84.33 MB
-
m28_230414_D06_suite2p.zip
640.22 MB
-
m28_230415_D07_bmi.zip
79.82 MB
-
m28_230415_D07_suite2p.zip
799.58 MB
-
m28_230416_D08_bmi.zip
76.98 MB
-
m28_230416_D08_suite2p.zip
372.92 MB
-
m28_230417_D09_bmi.zip
80.35 MB
-
m28_230417_D09_suite2p.zip
888.03 MB
-
m28_230418_D10_bmi.zip
73.41 MB
-
m28_230418_D10_suite2p.zip
379.09 MB
-
m28_230419_D11_bmi.zip
78.25 MB
-
m28_230419_D11_suite2p.zip
487.77 MB
-
m28_230420_D12_bmi.zip
84.15 MB
-
m28_230420_D12_suite2p.zip
1.59 GB
-
m28_230421_D13_bmi.zip
88.59 MB
-
m28_230421_D13_suite2p.zip
727.94 MB
-
m28_230422_D14_bmi.zip
72.12 MB
-
m28_230422_D14_suite2p.zip
705.50 MB
-
m28_230424_D14_bmi.zip
76.64 MB
-
m28_230424_D14_suite2p.zip
539.20 MB
-
m28_230425_D15_bmi.zip
75.74 MB
-
m28_230425_D15_suite2p.zip
509.24 MB
-
m29_230418_D01_bmi.zip
67.05 MB
-
m29_230418_D01_suite2p.zip
381.92 MB
-
m29_230419_D02_bmi.zip
78.51 MB
-
m29_230419_D02_suite2p.zip
469.65 MB
-
m29_230420_D03_bmi.zip
73.51 MB
-
m29_230420_D03_suite2p.zip
479.15 MB
-
m29_230421_D04_bmi.zip
66.72 MB
-
m29_230421_D04_suite2p.zip
262.28 MB
-
m29_230422_D05_bmi.zip
67.70 MB
-
m29_230422_D05_suite2p.zip
654.13 MB
-
m29_230423_D06_bmi.zip
71.80 MB
-
m29_230423_D06_suite2p.zip
259.27 MB
-
m29_230424_D07_bmi.zip
77.36 MB
-
m29_230424_D07_suite2p.zip
700.15 MB
-
m29_230425_D08_bmi.zip
43.72 MB
-
m29_230425_D08_suite2p.zip
414.48 MB
-
motion_behavior.parquet
16.42 KB
-
motion_data.parquet
42.99 KB
-
motion_during_trial.parquet
117.53 KB
-
neuron_stim_e1e2na.parquet
419.52 KB
-
online_delay.parquet
5.54 KB
-
online_motion.parquet
16.09 KB
-
README.md
9.07 KB
-
snr_E1E2_sep.parquet
174.63 KB
Abstract
This study employs two-photon calcium imaging to investigate neural activity in mice during a neuroprosthetic task. Using two-photon microscopy, we captured GCaMP8s fluorescence at a wavelength of 920nm. Mice, head-fixed on a spherical treadmill, controlled a neural cursor by modulating activity in two motor cortex neuron ensembles. The task provided auditory feedback and measured neuronal activity using dF/F ratios. Contrary to traditional neuroprosthetics, we delivered activation of dopamine receptors with photoswitches instead of water reward. We explored various experimental conditions to assess the effect of receptor activation on task performance and neuronal activity. This data set contains the post-processed data.
Description:
This dataset includes post-processed data derived from the raw data using Suite2p, original MATLAB files obtained during the BMI experiments, and pandas data frames containing analysis results. These results are the basis for the figures presented in the paper.
Data and File Structure:
The dataset comprises the following types of files:
- ZIP files for each session and each mouse: The filenames include the mouse identifier (e.g. “m13”), date (e.g. “
221112_D01
”), and a suffix indicating whether the file contains post-processed imaging data (suffix “_suite2p”) or original BMI execution data (suffix “_bmi”).- Example filenames:
m13_221112_D01_suite2p.zip
,m13_221112_D01_bmi.zip
- Example filenames:
- CSV files: These files contain specific analysis results that are not stored in Parquet format. CSV files store tabular data in plain text, where each line corresponds to a data record, and each record consists of fields separated by commas.
- Parquet files: These files include dataframes with analysis results utilized in the paper’s figures. Parquet is a columnar storage file format optimized for use with data processing frameworks like pandas.
- npy files: These files are used for storing large, multi-dimensional arrays of numerical data, typically used in scientific computing with Python.
- MAT files: These files store raw data collected during BMI experiments in MATLAB format, allowing for easy use and further analysis in MATLAB.
Content of the Suite2p ZIP Files:
bad_frames_dict.npy
: Contains information (in form of a python dictionary) about frames that were deemed bad during processing. It contains the index of the frames that are “bad”: ‘bad_frames_index’ (array with length T=time), and a boolean array (size T) indicating “1/True” on indeces of the frames that were “bad”. ‘bad_frames_bool’.bad_frames.npy
: Array size T, that lists bad frames identified during the imaging sessions. Index of the bad frames to be used during registration on neurons.dff.npy
: Array with NxT (N=neurons, T=time) that contains delta F over F values, which represent changes in fluorescence intensity.direct_neurons.npy
: Dictionary that identifies neurons directly controlling the BMI. Contains ’E1’: Index of the neurons (N) of the ensemble E1, ‘E2’: Index of the neurons (N) of the ensemble E2, ‘exclude’: Index of the neurons that must be excluded (redundant or merged with others), ‘added_neurons’: and index of the neurons that were added posthoc by the experimenter}F.npy
: NxT array that contains raw fluorescence data obtained by the Suite2p.Fneu.npy
: NxT array that contains neuropil fluorescence data, which helps in subtracting background fluorescence, obtained by the Suite2p.iscell.npy
: Array with Nx2 that identifies cell ROIs (Regions of Interest) as neurons if first column is a 1, and gives the measure of “being a neuron” in the second column.iscell_old.npy
: Array with Nx2 that contains the original classification of cell ROIs done by Suite2pops.npy
: Contains the final operational parameters used in the Suite2p processing.ops_before_1st.npy
: Operational parameters used in the first iteration of Suite2p processing.spks.npy
: NxT array that contains inferred spike rates of neurons obtained with suite2p.spks_dff.npy
: NxT array that contains inferred spike rates derived from delta F over F values (dff.npy).stat.npy
: N array that contains info about identified ROIs as obtained by Suite2p.stim_time_dict.npy
: Dictionary that contains the array (T) with indexes of stims:”stim_index” and the bool array (T) that indicate with a “1” when the stim happened (“stim_bool”).target
time
dict.npy
: Dictionary that contains the array (T) with indexes of when the target was achieved:”target_index” and the bool array (T) that indicate with a “1” when the target was achieved (“target_bool”).
Content of the BMI ZIP Files:
- folder motor: Contains behavioral motor data. It contains 2 files with behavioral data. The filenames include the date (e.g. “
221112_D01
”), a suffix indicating whether the file contains the “XY” positions of the animal or the metadata “Trigger”, the mouse identifier (e.g. “13”), and a suffix indicating if the behavior correspond to the “Baseline” (calibration) or the “BMI” (e.g. “221112_XY_13_BMI”). BaselineOnline.mat
: Array with NxT raw data of all the online neurons captured during calibration.BMI_online.mat
: Data from the BMI online session. Contains “bData” and “data”.- bData: Metadata to run the BMI based on BaselineOnline.mat data
- data:
- data.cursor, T array with the BMI neural cursor
- data.fb_freq, T array with the frequency of the auditory feedback (mapped to the cursor)
- data.bmiAct, NxT neural activity of the direct neurons.
- data.baseVector, T baseline vector obtained and used during the BMI
- data.selfHits, T boolean array to indicate with a “1” that a target has been acquired
- data.selfDRstim, T boolean array to indicate with a “1” that a stim has been delivered (through BMI)
- data.vector_stim, Array of indeces where to delivered a predetermined stim (obtained by randomly assigning indeces)
- data.vectorWater, T boolean array to indicate with a “1” that water reward has been delivered. There was none in these experiments.
- data.randomDRstim, T boolean array to indicate with a “1” that a stim has been delivered (through “vector_stim”)
- data.trialStart, T boolean array to indicate with a “1” that a trial starts.
- data.timeVector, T boolean array to indicate with time lapse from the previous index.
- data.selfTargetCounter, Counter of targets achieved with BMI
- data.selfTarget_DR_stim_Counter, Counter of stims delivered with BMI
- data.sched_random_stim, Counter of stims delivered from “vector stim”
- data.Water_Counter, Counter of water rewards
- data.trialCounter, data.frame, Counter of frames
BMI_target_info.mat
: Metadata with the Target information from the BMI session (redundancy with bData)roi_data.mat
: Structure containing the spatial distribution of neurons.- im_sc_struct, structure with info about the resizing of the background image. Metadata.
- plot_images, Green and Red channel reference image
- roi_data: Calibration roi-masks for all the neurons recorded
- roi_data.im_bg, background image (reference green image)
- roi_data.num_rows, roi_data.num_cols, number of pixels in the image
- roi_data.num_rois, number of rois recorded during calibration
- roi_data.roi_mask, roi_data.roi_mask_bin, location of each neuron
- roi_data.roi_bin_cell, mask of each neuron
- roi_data.x, roi_data.y, location in x and y for each neuron
- roi_data.im_roi, roi_data.im_roi_rg, images for plotting
strcMask.mat
: Structure mask data of the ensemble neurons used in the analysis. Relevant variables- strcMask.roi_ind, the index of each of the neurons.
- strcMask.num_roi, number of Rois that do the ensemble
- strcMask.maxx, location of the higher end in the Xaxis for each ensemble neuron. Needed to apply the neuronMask
- strcMask.minx, location of the lower end in the Xaxis for each ensemble neuron. Needed to apply the neuronMask
- strcMask.maxy, location of the higher end in the Yaxis for each ensemble neuron. Needed to apply the neuronMask
- strcMask.miny, location of the lower end in the Yaxis for each ensemble neuron. Needed to apply the neuronMask
- strcMask.neuronMask, Mask for each ensemble neuron
- strcMask.xctr, location of the center Xaxis for each ensemble neuron
- strcMask.yctr, location of the center Yaxis for each ensemble neuron
- strcMask.width, Width of each ensemble neuron
- strcMask.height, Height of each ensemble neuron
target_calibration.mat
: Metadata used by the algorithm to calibrate the BMI.
Additional Information:
- Python: A high-level programming language widely used in scientific computing, data analysis, and machine learning. It is known for its readability and extensive libraries, which facilitate a broad range of applications in research and development.
- Pandas: A Python library used for data manipulation and analysis. It provides data structures like DataFrames.
- MATLAB: A programming platform designed for engineers and scientists. It allows for matrix manipulations, plotting of functions and data, implementation of algorithms, and creation of user interfaces. MATLAB is commonly used for data analysis and visualization in research.
- DataFrame: A two-dimensional, size-mutable, and potentially heterogeneous tabular data structure with labeled axes (rows and columns). It’s similar to a table in a database or an Excel spreadsheet.
We employed a Bruker Ultima Investigator system for calcium imaging, using a Chameleon Ultra II Ti: Sapphire laser tuned to 920nm to visualize GCaMP8s combined with a Olympus XLUMPLFLN 20XW objective and two GaAsP photomultiplier tubes.
Mice were secured in place on a styrofoam ball, where they could move freely under the two-photon microscope. We captured 512×512 pixel frames, approximately 300µm in size, at a rate of 29.7Hz using Prairie View software. The system enabled real-time communication between Prairie View and the BMI code running on Matlab 2017b, facilitating smooth experimental control and data acquisition.
We made manual adjustments during the recordings to address potential motion drifts.
Calcium transients were extracted using Suite2p. Initially, an anatomical-only analysis captured the neuropil fluorescence signal, which was averaged and denoised to correct for photobleaching. Frames affected by photostimulation were identified and excluded from the second pass of Suite2p (anatomical + functional) .
In addition to the default Suite2p classifier results (probability threshold >0.1), we applied additional criteria to define a region of interest (ROI) as a neuron. The criteria included skewness of the neuropil-corrected fluorescence trace (0.4 to 10), neuron compactness (<1.4), ROI footprint (0 to 3), and the number of pixels (>80). We also required an SNR greater than two and stability, defined by less than 20% signal amplitude change and a standard deviation of the low-pass filtered signal under 1 during the experiment.
Imaging Setup and Data Acquisition
- System: Bruker Ultima Investigator with Chameleon Ultra II Ti: Sapphire laser.
- Wavelength: 920nm for GCaMP8s.
- Detection: Two GaAsP photomultiplier tubes with an Olympus objective.
- Head-Fixation: Mice were head-fixed on a styrofoam ball, allowing free movement.
- Frame Details: 512x512 pixels, approximately 300µm, at 29.7Hz.
- Software: Prairie View for imaging, Matlab 2017b for experimental control and data acquisition.
- Motion Correction: Manual adjustments during recordings.
Neuroprosthetic Task
- Neural Cursor: Mapped from motor cortex neuron ensembles E1 and E2.
- Success Criteria: Neural cursor crossing a threshold (T1).
- Auditory Feedback: Tone mapping corresponding to neural cursor values.
- Task Duration: 30 minutes, with a 1-minute stabilization period.
Online Processing
- Data Acquisition: PrairieLink with Matlab 2020b.
- Activity Measurement: dF/F ratios, with dynamic baseline fluorescence (F0) calculation.
Experimental Conditions
- Main Experiments: 'D1R activation', 'CONTROL', 'CONTROL_LIGHT', 'CONTROL_AGO', 'DELAY', 'RANDOM'.
- Daily Selection: Randomly selected with a preference for 'D1R activation'.
- Technical Issues: Variable mouse availability due to technical difficulties.
- Optical Stimulation: Used in 'D1R activation', 'CONTROL_LIGHT', 'DELAY', and 'RANDOM'.
- Conditions: Blue light for D1R activation, UV light for reset.
Image Pre-Processing
- Software: Suite2p for calcium transient extraction.
- Initial Analysis: Anatomical-only for neuropil signal, denoising for photobleaching.
- Functional Segmentation: Exclusion of photostimulation-affected frames.
- Manual Neuron Identification: Additional criteria for SNR, stability, and other metrics.
Motor Analysis
- Setup: Head-fixed mice on a spherical treadmill.
- Movement Recording: Positional coordinates smoothed and analyzed using Traja.
- Threshold for Movement: Speed > 5mm/sec.
Please see manuscript for further methods.