Skip to main content
Dryad

Validating marker-less pose estimation with 3D x-ray radiography

Data files

May 12, 2022 version files 45.32 GB

Select up to 11 GB of files for download

Abstract

These data were generated to evaluate the accuracy of DeepLabCut (DLC), a deep learning marker-less motion capture approach, by comparing it to a 3D x-ray video radiography system that tracks markers placed under the skin (XROMM). We recorded behavioral data simultaneously with XROMM and RGB video as marmosets foraged and reconstructed three-dimensional kinematics in a common coordinate system. We used XMALab to track 11 XROMM markers, and we used the toolkit Anipose to filter and triangulate DLC trajectories of 11 corresponding markers on the forelimb and torso. We performed a parameter sweep of relevant Anipose and post-processing parameters to characterize their effect on tracking quality. We compared the median error of DLC+Anipose to human labeling performance and placed this error in the context of the animal's range of motion.