Skip to main content
Dryad

Data from: Interspecific interactions among major carnivores in Panna Tiger Reserve: A multispecies occupancy approach

Data files

Oct 14, 2024 version files 113.84 KB

Click names to download individual files

Abstract

Aim: Large carnivores play a crucial role in trophic cascades, affecting the population dynamics of both co-predators and prey within an ecosystem. Understanding the significance of these carnivores in trophic interactions is essential for developing effective conservation and management strategies. We examined the effects of occupancy dynamics and patterns of species interactions and co-existence within the carnivore guild in the Panna Tiger Reserve in India.

Methodology: We collected camera trap data (two seasons, 2019) in a presence-absence framework and applied multispecies occupancy models to assess the occupancy, co-occurrence, and interactions among species. We also examined activity overlap to understand the temporal segregation in the carnivore guild.

Results: The mean marginal occupancy was highest for leopards in winter (Ψwinter 0.92±0.02, Ψsummer 0.63±0.05) and hyenas in summer (Ψsummer 0.93±0.03, Ψwinter 0.78±0.03) and was lowest for tigers in both seasons (Ψwinter 0.62±0.05, Ψsummer 0.15±0.05). Co-occurrence probability among carnivores was higher in winter than in summer, and conditional occupancy was consistently higher when other species were present. Different environmental factors influenced marginal occupancy and co-occurrence patterns across seasons. Strong temporal overlaps were recorded between tiger–leopard (0.87–0.91) and tiger–hyena (0.78–0.79).

Conclusion: We detected a significant spatial segregation between tigers and leopards, as they prefer different habitat types in different seasons, along with high temporal overlap. Resource availability strongly governs the association of carnivores with their habitat selection. Hyenas demonstrated higher dependency on tigers than on leopards for resources. These findings indicate that co-existence with apex-predator species is feasible through strategic adaptation to fulfil resource requisition.