Empirical food webs of 12 tropical reservoirs in Singapore
Data files
Mar 24, 2022 version files 359.92 KB
-
Bottom-up_predation_matrices_(combined).xlsx
75.62 KB
-
diet_composition_fish.xlsx
19.38 KB
-
MixingModelInputs_Res6.zip
253.37 KB
-
R_script_v4.R
11.54 KB
Aug 10, 2021 version files 359.92 KB
-
Bottom-up_predation_matrices_(combined).xlsx
75.62 KB
-
diet_composition_fish.xlsx
19.38 KB
-
MixingModelInputs_Res6.zip
253.37 KB
-
R_script_v4.R
11.54 KB
Mar 31, 2022 version files 200.39 KB
-
Bottom-up_predation_matrices_(combined).xlsx
75.62 KB
-
Bottom-up_predation_matrices_Res_1.csv
2.56 KB
-
Bottom-up_predation_matrices_Res_10.csv
3.11 KB
-
Bottom-up_predation_matrices_Res_11.csv
3.14 KB
-
Bottom-up_predation_matrices_Res_12.csv
4.78 KB
-
Bottom-up_predation_matrices_Res_2.csv
2.83 KB
-
Bottom-up_predation_matrices_Res_3.csv
2.62 KB
-
Bottom-up_predation_matrices_Res_4.csv
2.55 KB
-
Bottom-up_predation_matrices_Res_5.csv
2.78 KB
-
Bottom-up_predation_matrices_Res_6.csv
2.34 KB
-
Bottom-up_predation_matrices_Res_7.csv
3.94 KB
-
Bottom-up_predation_matrices_Res_8.csv
2.94 KB
-
Bottom-up_predation_matrices_Res_9.csv
3.25 KB
-
Bottom-up_predation_matrices_Site_information.csv
1.12 KB
-
Bottom-up_predation_matrices_Taxa_code.csv
1.21 KB
-
diet_composition_fish_metadata.csv
2.05 KB
-
diet_composition_fish.csv
10.11 KB
-
diet_composition_fish.xlsx
19.38 KB
-
MixingModelInputs_Res6_(updated)_2.zip
46.84 KB
-
README_for_empiricalfoodwebs.rtf
7.21 KB
Abstract
We present 12 food webs from tropical reservoir communities in Singapore, and summarise the topology of each with widely used network indices (e.g., connectance, link density). Each reservoir was surveyed over 4–6 sampling occasions, during which, representative animal groups (i.e., fish species, and taxonomic/functional groups of zooplankton and benthic macroinvertebrates) and all likely sources of primary production (i.e., macrophytes, periphyton, phytoplankton, and riparian terrestrial plants) were collected. We determined and measured gut content in fishes and bulk isotope (d13C and d15N) profiles of the animals collected, which contributed to estimating the relative strength of trophic relationships using Bayesian mixing models. We document our protocol here, alongside a script in the R programming language for executing data management/analyses/visualisation procedures used in our study. This data can be used to glean insights into trends in inter- and intra-specific or guild interactions in analogous freshwater lake habitats.
Please see the associated published article for details.