Skip to main content
Dryad

Data from: Innovative airborne DNA approach for monitoring honey bee foraging and health

Data files

Jul 22, 2025 version files 298.16 MB

Abstract

Environmental DNA (eDNA) refers to genetic material collected from the environment and not directly from an organism. eDNA is best known as a tool in aquatic ecology but has been found associated with almost every substrate examined including soils, surfaces, and riding around on other animals. The collection of eDNA from air is one of the most recent advances and has been used to monitor a variety of organisms, including plants, animals, and microorganisms. Current evidence suggests a high turnover rate providing a recent signal for the presence of DNA associated with an organism. Here, we test whether material carried in air can be collected from honey bee hives to evaluate recent foraging behavior and colony health. We sampled air using purpose-built “bee safe” air filters operating for 5-6 hours at each colony. We successfully recovered plant, fungal and microbial DNA from the air within hives over a 3-week pilot period. From these data we identified the core honey bee microbiome and plant interaction data representing foraging behaviour. We calculated beta diversity to estimate the effects of apiary sites and sampling date on data recovery. We observed that variance in ITS data was influenced by sampling date. Given that honey bees are generalist pollinators our ability to detect temporal signals in associated plant sequence data suggest this method opens new avenues into the ecological analysis of short-term foraging behavior at the colony level. In comparison variance in microbial 16S sequencing data was more influenced by sampling location. As the assessment of colony health needs to be localized, spatial variance in these data indicate this may be an important tool in detecting infection. This pilot study demonstrates that colony air filtration has strong potential for the rapid screening of honey bee health and for the study of bee behaviour.