Data from: Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson–Gilford progeria syndrome
Data files
Jun 11, 2020 version files 578.49 KB
-
Biaxial_Contraction_Data_-_P100_-_DTA.xlsx
26.17 KB
-
Biaxial_Contraction_Data_-_P100_-_IAA.xlsx
26.55 KB
-
Biaxial_Contraction_Data_-_P140_-_ATA.xlsx
38.72 KB
-
Biaxial_Contraction_Data_-_P140_-_DTA.xlsx
38.70 KB
-
Biaxial_Contraction_Data_-_P140_-_IAA.xlsx
36.47 KB
-
Biaxial_Contraction_Data_-_P140_-_SAA.xlsx
36.93 KB
-
Biaxial_Testing_Data_-_P100_-_DTA_-_MtrlProp.xlsx
22.87 KB
-
Biaxial_Testing_Data_-_P100_-_DTA_-_StructProp.xlsx
26.41 KB
-
Biaxial_Testing_Data_-_P100_-_IAA_-_MtrlProp.xlsx
22.67 KB
-
Biaxial_Testing_Data_-_P100_-_IAA_-_StructProp.xlsx
26.37 KB
-
Biaxial_Testing_Data_-_P140_-_ATA_-_MtrlProp.xlsx
32.28 KB
-
Biaxial_Testing_Data_-_P140_-_ATA_-_StructProp.xlsx
38.93 KB
-
Biaxial_Testing_Data_-_P140_-_DTA_-_MtrlProp.xlsx
30.24 KB
-
Biaxial_Testing_Data_-_P140_-_DTA_-_StructProp.xlsx
36.89 KB
-
Biaxial_Testing_Data_-_P140_-_IAA_-_MtrlProp.xlsx
31.41 KB
-
Biaxial_Testing_Data_-_P140_-_IAA_-_StructProp.xlsx
37.76 KB
-
Biaxial_Testing_Data_-_P140_-_SAA_-_MtrlProp.xlsx
31.31 KB
-
Biaxial_Testing_Data_-_P140_-_SAA_-_StructProp.xlsx
37.82 KB
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an ultra-rare disorder with devastating sequelae resulting in early death, presently thought to stem primarily from cardiovascular events. We analyse novel longitudinal cardiovascular data from a mouse model of HGPS (LmnaG609G/G609G) using allometric scaling, biomechanical phenotyping, and advanced computational modelling and show that late-stage diastolic dysfunction, with preserved systolic function, emerges with an increase in the pulse wave velocity and an associated loss of aortic function, independent of sex. Specifically, there is a dramatic late-stage loss of smooth muscle function and cells and an excessive accumulation of proteoglycans along the aorta, which result in a loss of biomechanical function (contractility and elastic energy storage) and a marked structural stiffening despite a distinctly low intrinsic material stiffness that is consistent with the lack of functional lamin A. Importantly, the vascular function appears to arise normally from the low-stress environment of development, only to succumb progressively to pressure-related effects of the lamin A mutation and become extreme in the peri-morbid period. Because the dramatic life-threatening aortic phenotype manifests during the last third of life there may be a therapeutic window in maturity that could alleviate concerns with therapies administered during early periods of arterial development.